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Abstract. This work is concerned with numerical solutions of incompressible viscous flows at low Reynolds numbers.  In particular, 
an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional 
fluid flows is presented.  The conservation equations are solved in stream function - vorticity formulation.  We compare the ADI and 
generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number problems.  Numerical results 
demonstrating the applicability of this technique are also presented. 
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1. Introduction 
 

It is currently well recognized that fluid flows encountered in practical applications are characterized by low and 
high Reynolds numbers. It is difficult to obtain numerical solutions for these classes of problems, due to the inertia and 
viscous terms of the conservation laws.  Consequently, this theme has been studied in the Computational Fluid 
Dynamics community. The stream function-vorticity formulation is a method for solving incompressible viscous flow 
problems. Peaceman and Rachford (1955) proposed an alternating-direction implicit scheme (PR-ADI) for solving 
parabolic differential equations. For low Reynolds number problems, this method converges slowly to the exact solution 
(Dean and Glowinski, 1993). To overcome this drawback of the PR-ADI scheme, a new method called θ-scheme has 
been developed (Dean and Glowinski, 1993; Glowinski, 1987). In this method, there are split parameters α and β such 
that β must be less than α. In the usage of the ADI scheme in two-dimensional problems, it often occurs that α=β=1/2.  
Dai (1997) proposed a new ADI scheme for solving two-dimensional parabolic equation based on the idea of 
regularized difference schemes (Samarskii and Vabishchevich, 1994). Dai’s two-level difference scheme generalizes 
the PR-ADI scheme, and it is called generalized. It also overcomes the drawback of the PR-ADI scheme. 

The present study applies the generalized Dai scheme to solve incompressible viscous flow problems for low 
Reynolds numbers. These flows refer to fluid motions that are dominated by viscosity and are often at the intersection 
of research problems in biology, chemistry, engineering, and physics. The influence of viscosity becomes more 
important when motions concern either progressively smaller objects or slower flows. The primary reason for this is 
that as the surface area per unit volume of the object increases, the frictional contact with the fluid becomes increasingly 
more important. In particular, the fluid flow in a rectangular region is considered in this work. Several authors have 
investigated the cavity problem, where the motion is driven by the uniform translation of the top wall. Burggraf (1966) 
investigated the analytical and numerical solutions of the flow in this domain. Pan and Acrivos (1967) studied the 
steady flow in rectangular cavities showing experimental results. Guia et al. (1982) presented solutions for stream 
function – vorticity formulation of two-dimensional incompressible Navier-Stokes equations using a multigrid 
technique. The present study complements these investigations in two aspects: (a) analyzing low Reynolds number 
problems; and (b) showing a generalized scheme for this kind of flow. 
 
2. Governing equations and boundary conditions 
 

For a Newtonian incompressible fluid, with constant kinematic viscosity ν, the Helmholtz vorticity equation takes 
the form 
 

( ) ω∇ω
ω 2.

Dt

D
∇ν+= V , (1) 
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where D/Dt is the substantial derivative, V and ω=∇xV are the velocity and vorticity vectors, respectively. In two-
dimensional problems, the vorticity is a scalar and the vector potential Ψ (V=∇xΨ) is replaced by the stream function 
ψ. 

A pseudo-transient approach (Hoffmann and Chiang, 1995; Roache, 1972; Widllund, 1967) for incompressible 
viscous fluid flow problems is expressed  by the following equations 
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where t is the time, u and v are the components of velocity along the x and y directions, respectively, γ is an arbitrary 
constant and Re=UL/ν is the Reynolds number. The Eqs. (2a)-(2d) have been non-dimensionalized by a characteristic 
velocity U, length scale L and kinematic viscosity ν. If a steady solution exists, it can be obtained numerically if a time 
marching procedure is carried out until the time-independent boundary conditions force a steady-state. After the 
computation of the velocity field, if the pressure p is required, one needs to solve an extra Poisson equation.  

Figure 1 illustrates the domain Ω = (0, xmax) x (0, ymax) and the boundary set ∂Ω = {(x=0, 0≤y≤ymax), (y=0, 
0≤x≤xmax), (x=xmax, 0≤y≤ymax), (y=ymax, 0≤x≤xmax)} for the driven cavity problem. The Cartesian coordinate system is 
positioned at the origin O (x=0, y=0). The vector velocity V is imposed on the top boundary (y=ymax, 0≤x≤xmax). The 
aspect ratio AR is a value given by the relation ymax/xmax. Tannehill et al. (1997) present a second order accurate 
approximation for the vorticity on the boundary. These authors mention that this approximation can lead to unstable 
calculations at moderate to high Reynolds numbers. In order to have the proposed method working for both high and 
low Reynolds numbers, we shall be using a first order approximation for the vorticity on the boundary, as described 
below. A comprehensive review of boundary conditions for the vorticity in the numerical solution of the stream 
function – vorticity equations is discussed by Napolitano et al. (1999).  

 

 
Figure. 1. Driven cavity. 
 

On the boundary ∂Ω, we prescribe the velocity vector bV , which can be related to the outer unit normal vector (n) 
and the unit tangent vector (t) by the expressions 
 

)x(f.b =tV , (3a) 

)x('g.b =nV . (3b) 
 

Using the definition of the stream function, the boundary conditions on the part )y(x,x Ω∂=Ω∂  of the boundary 

∂Ω are represented by 
 

f(x).)yu(x,)y(x,
y

==+=
∂

ψ∂
tbV . (4a) 
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(x)'g.)yv(x,)y(x,
x

==−=
∂

ψ∂
nbV , (4b) 

 
where y  is a particular value in y direction. A grid point in the domain Ω is described by (xi, yj), where xi=ihx, yj=jhy, 
i=0,1,...,N, j=0,1,...,M, hx and hy are the grid sizes such that Nhx=xmax and Mhy=ymax.  Integrating the Eq. (4b), with the 
integrating constant chosen equal to zero, we obtain the stream function on the boundary ∂Ωx 
 

)ig(x)y,i(x =ψ . (5) 
 

For the calculation of the vorticity on the boundary, we need to compute )y(x,
2x

2

∂

ψ∂
 and )y(x,

2y

2

∂

ψ∂
 at the grid 

points )y,i(x  of the boundary ∂Ωx .  From (4b) we obtain 
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2
=

∂
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. (6) 

 
We write the Taylor expansion to calculate the second derivative of ψ with respect to y as 
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where y  is the value in the domain Ω so that yyyh −= . Using this equation, one obtains the desired value of the 

vorticity on the boundary ∂Ωx , namely 
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The same analysis could be done on the part y),x(y Ω∂=Ω∂  of the boundary ∂Ω, where x  is a particular value in 

x direction. 
 
3. Generalized Peaceman-Rachford ADI scheme for parabolic equations 
 

Dai applied the generalized Peaceman-Rachford ADI scheme only to parabolic differential equations, namely to the 
problem 
 

,0t,1y,x0,wk
t
w 2 >≤≤∇=
∂
∂

 (9a) 

,1y,x0),y,x(w)0,y,x(w 0 ≤≤=  (9b) 

,0t),y,x(u)t,y,x(w >= Ω∂  (9c) 
 
where k is a positive constant. In this particular problem, the Dai scheme is represented by 
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where h is the grid size, ∆t = tn+1 - tn is the time step, ε ≥ 0 is a small parameter, and δ2

x and δ2
y are the usual central 

difference operators.  When ε=0, it becomes the PR-ADI scheme. Dai called this scheme the generalized Peaceman-
Rachford ADI scheme.  It is very well suited for simulating fast transient phenomena and it captures efficiently steady-
state solutions of parabolic differential equations (Dai, 1997). The present work applies the same scheme for low 
Reynolds number problems, which have different characteristics from a single parabolic equation. 
 
4. Stability of the Peaceman-Rachford ADI scheme for the vorticity equation 
 

The approximation for the exact solution of the vorticity (Eq.2a), or the stream function (Eq.2b), is φ(xi, yj, 
n∆t)≡φij

n. Considering Eq. (2a), the PR-ADI scheme can be written in the forms of Eqs. (11a) and (11b):  
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where δx and δy are the central difference operators. The components of the velocity u and v are fixed in each time step. 
Equation (11a) expresses the vorticity at the point (xi, yj, tn+1/2) and Eq. (11b) is related to the vorticity at the point (xi, yj, 
tn+1). For a discrete Fourier mode )ykxk(I

21
nn

ij
j2i1e)k,k( +ρ=ω , the amplification factor ρ takes the form 
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where 2/1)1(I −= , k1=iπ, k2=jπ, i=1,...,N-1, j=1,...,M-1.  The amplification factor is written in the form ρ=A.B and both 
A and B are expressions of the form numerator (U) divided by denominator (D), where |Re U|≤Re D and Im U=-Im D.  
So, |A|≤1 and |B|≤1 and, therefore, the PR-ADI scheme is unconditionally stable. 
 
5. Stability of the generalized ADI scheme for the vorticity equation 
 

As shown by Dai, the main drawback of PR-ADI scheme is that the amplification factor |ρ(λx,λy,(N-1)π,(N-1)π|∼1 
for large values of λx and λy, implying that, for low Reynolds numbers, the solution obtained by PR-ADI scheme 
converges slowly to the solution of parabolic differential equation.  Based on Dai’s analysis, we can write the 
generalized ADI scheme for the vorticity equation as follows 
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where εx and εy are positive constants. As mentioned by Dai, when εx=εy=0, Eqs. (14a) and (14b) become the PR-ADI 
scheme. For the generalized scheme, the amplification factor is expressed by 
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where βx=1-cos(k1hx), βy=1-cos(k2hy), αx=sin(k1hx) and αy=sin(k2hy). This generalized scheme is unconditionally stable 
if λxβx-λyεyβy>0 and λyβy-λxεxβx>0. Since βx is either of O(1) or O(hx

2), and βy is either of O(1) or O(hy
2), then εx and εy 

are O(hx
2) and O(hy

2), respectively. If λx and λy are very large so that λxβx and λyβy are significantly large, the modulus 
of the amplification factor tends to a value smaller than one. Therefore, this scheme is suited to simulate problems in 
which the Reynolds number is much smaller than one (creeping flows). The ADI method is conditionally stable at each 
time step (Sod, 1985). If one chooses λyβy-λxεxβx>1, then the first step (14a) may become unstable, and 

2
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ij
+ω  may 

become large compared to 
2

n
ijω  and 

2
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ij
+ω . However, this is corrected when the second step (14b) is applied. So, for 

low Reynolds number problems, the time step should not have very large values. 
Using the vorticity computed by Eqs. (11) or (14), the stream function (Eq. 2b) can be approximated by the PR-ADI 

scheme at the points (xi, yj, tn+1/2) and (xi, yj, tn+1) respectively as 
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The components of the velocity vector in the interior of the rectangular region are computed by 
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1ij1ij
ij h2
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6. Numerical results 
 

We compare the time-marching PR-ADI (Eq. 11) and the generalized PR-ADI (Eq. 14) schemes in the simulation 
of incompressible viscous flows. The Navier-Stokes equations are solved in a rectangular driven cavity using the stream 
function – vorticity approach.  The vector velocity on the top is V = (u,v)= (4x2(1-x2),0) and the maximum of u is 
umax=1 at x=1/21/2.  This problem is solved using Eq. (2).  The dependent variables u, v, ω, and ψ are determined by the 
time-marching method. The time step is constant and the constant γ=1 is used.  The space increments are computed as 
hx=xmax/N and hy=ymax/M.  

We consider a grid N=20, M=20. The time step is ∆t=10-4 and the cavity is square (AR=1). Table 1 shows the 
number of time steps for several Reynolds numbers. The number of time steps is reached when the time-independent 

boundary conditions forces a steady state, i. e., when the error for the vorticity n
ij

n
ij

1n
ij

ω

ω−ω +

 is smaller than a given 

tolerance TOL, at the grid points (i,j), i=1,...,N-1 and j=1,...,M-1. This table compares the two schemes (PR-ADI and 
generalized PR-ADI).  When εx=εy=0, we observe that for very low Reynolds numbers (Re≤ 10-8), the number of time 
steps increases.  In the other case, for εx=εy=0.0024 smaller than O(hx

2) and O(hy
2), it is noticeable that for Re≤ 10-6 the 

number of time steps decreases.  For Reynolds numbers greater than 10-3, the number of time steps computed by both 
schemes is the same.  Nevertheless, for low Reynolds numbers, besides the number of time steps increasing when the 
PR-ADI scheme is used, we need to use a small tolerance for the vorticity (TOL=10-5). Table 1 illustrates for Re=10-100 
that the solution is reached with only 1,581 time steps when the generalized PR-ADI is used. The results obtained for 
the various small values of the Reynolds numbers (Re ≤ 10-1) are similar and show a convergence to Re=0. These small 
values of Reynolds were used only to simulate a Creeping Flow, where viscous effects predominate and inertia is 
negligible. 
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Table 1. Number of time steps for the schemes PR-ADI and generalized PR-ADI. 
Re Number of time steps (εx=εy=0) 

TOL=10-3        TOL=10-4               TOL=10-5 
Number of time steps (εx=εy=0.0024) 

TOL=10-3            TOL=10-4             TOL=10-5 
100 21,729 67,813 188,932 21,729 67,813 188,932 
10 7,359 10,052 13,840 7,359 10,052 13,840 
1 2,700 2,772 3,908 2,700 2,772 3,908 

10-1 1,407 1,770 2,153 1,407 1,770 2,153 
10-2 1,523 1,932 2,368 1,523 1,932 2,368 
10-3 1,531 1,943 2,383 1,531 1,943 2,383 
10-4 1,523 1,928 2,360 1,526 1,933 2,366 
10-5 1,338 2,336 3,293 1,493 1,864 2,258 
10-6 8,343 13,900 17,886 1,453 1,610 1,659 
10-7 23,758 82,986 104,253 1,553 1,688 1,721 
10-8 5,234 229,571 829,419 1,578 1,716 1,750 

10-100 - - - 1,581 1,719 1,754 
 

Figure 2 shows the stream function for Re=10-8. The stream function in Fig. 2(a) and (b) converge to different states 
from the ones reached in Fig. 2(c) and (d). Notice that Fig. 2(b) is slightly different near the top boundary. However, the 
number of time steps in Fig. 2(c) is much greater than in Fig. 2(d). Figure 2(d) presents the results obtained with the 
generalized PR-ADI showing that the solution is reached with a tolerance (TOL=10-3) greater than that for the PR-ADI 
scheme (TOL=10-5, Fig.2(c)). In Fig. 2(a) the tolerance was reached, but the solution does not present the same pattern 
because of a smaller number of time steps (5,234 – see Table 1). This is a problem of the PR-ADI scheme for low 
Reynolds numbers. Using the same tolerance, the generalized PR-ADI scheme (Fig. 2(d)) efficiently captures the 
steady-state solution. It happens because the amplification factor tends to a value smaller than one for low Reynolds 
number, differently from the PR-ADI scheme (Fig. 2(a)) that tends to one. 

 
Figure. 2. Stream function contours for Re=10-8, ∆t=10-4 and N=M=20: (a) TOL=10-3, εx=εy=0; (b)  TOL=10-4, εx=εy=0; 
(c) TOL=10-5, εx=εy=0; (d) TOL=10-3, εx=εy=0.0024. 
 

Next, we examine the influence of the size of the time step in the calculations when the Reynolds number is Re= 
10-8. Figure 3(a)-(c) represents the vorticity for ∆t=10-5, 10-6 and 10-7. In this figure the number of time steps is 9,959, 
30,769 and 961, respectively, for the same tolerance (TOL=10-3). As the number of time steps decreases (Fig. 3(c)), we 
conclude that the tolerance is reached but the vorticity is not stabilized in the same state as in Fig. 3(a) and (b). This is 
because the size of the time step is so small that the flow does not change very much from one step to the other. In this 
case, a smaller value for tolerance needs to be chosen for the steady-state to be reached. So, the cavity problem for a 
time step ∆t=10-7 and a fixed number of time steps 307,690 – ten times the number of the time steps for ∆t=10-6 - is 
simulated (Fig. 3(d)). In this case, the vorticity is stabilized in the same state as in Fig. 3(a) and (b) with a calculated 
value of the tolerance equals 8.8x10-5. For ∆t=10-3, the solution did not converged because the first step (Eq. 14a.) 
became large, so that the second step (Eq. 14b) was not able to correct the solution. 
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Figure. 3. Stream function contours for Re=10-8, εx=εy=0.0024 and N=M=20: (a) TOL=10-3, ∆t=10-5; (b) TOL=10-3, 
∆t=10-6; (c) TOL=10-3, ∆t=10-7; (d) n=307,690, ∆t=10-7, TOL=8.8x10-5 (calculated). 

 
Now, we consider the grid dependence to the generalized PR-ADI scheme. Figure 4 displays the influence of the 

grid in the results. For this, Re=10-8, ∆t=10-10, TOL=10-3 and four grids (20x20, 50x50, 100x100 and 200x200) are used. 
It can be observed that the four curves (Fig. 4(a)-(d)) for stream function are similar. The first two look slightly 
different near the top boundary because of plotting resolution, but the values are equal for the same position of the grid. 
Therefore, the grid does not interfere in the generalized PR-ADI scheme. However, it is necessary to choose larger 
values of εx and εy for rapid convergence especially when  the grid size is larger. The values of εx and εy are computed 
so that they are O(hx

2) and O(hy
2), respectively. The number of time steps in Fig. 4(a)-(d) is 1,012, 1,012, 1,010 and 

1,005. 

 
Figure. 4. Stream function contours for Re=10-8, ∆t=10-10 and TOL=10-3: (a) N=M=20, εx=εy=0.0024; (b) N=M=50, 
εx=εy=0.00039; (c) N=M=100, εx=εy=0.00009; (d) N=M=200, εx=εy=0.000024. 

 
We now study what happens if the flow is in a rectangular cavity (AR=2).  A grid N=50, M=50 is defined. In this 

case, the Reynolds number is  Re=10-8, the time step is ∆t=10-5, and εx=0.00039, εy=0.0015. For a tolerance of TOL= 
10-3, the number of time steps is 19,017. Figure 5(a) illustrates that the stream function rotates in the clockwise direction 
in the superior part of the cavity. We can see the counterclockwise re-circulation in the bottom of the cavity. Figure 5(b) 
shows the vorticity contours in the superior and inferior part of the rectangular cavity.  
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Fig. 5. Rectangular cavity (AR=2): (a) stream function ψ; (b) vorticity ω. 
 
7. Conclusions 
 

This paper has investigated the behavior of the generalized Peaceman-Rachford ADI scheme. This scheme is 
appropriate for low Reynolds number flow problems because of its rapid convergence characteristic. It has proved to be 
an efficient method for simulating fast transient phenomena and capturing steady-state solutions. We obtain good 
results for Re=10-8 and smaller values. As in each time step the ADI method is conditionally stable, choosing a very 
large ∆t is not recommended. We applied the generalized scheme in a cavity and the grid independence was confirmed. 
This method was also applied for a rectangular cavity and low Reynolds numbers. In this case, it was observed that a re-
circulation in the inferior part of the cavity was obtained with few time steps. For high Reynolds number problems, both 
schemes (ADI and generalized) lead to the same results. 
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