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Abstract. Annular flow and heat transfer of immiscible liquids inside channels have several practical motivations related to pumping 
of very viscous fluids, heat exchange enhancement, fouling and corrosion reduction, etc. In this work, an analytical solution for the 
temperature field in the thermal entrance region of vertical annular undisturbed flow of two immiscible liquids is presented, taken as 
a limiting situation for more general stratified and/or dispersed two-phase flow modeling. The integral transform technique is used 
to describe the laminar flow heat transfer phenomena, under a constant heat flux boundary condition at the tube wall. To 
demonstrate its applicability, the theoretical model here proposed has been applied to the analysis of a situation dealing with 
corrosion and fouling effects reduction, by using a kerosene flow between the wall and water core inside a vertical circular duct. In 
this system, the heat transfer to the core is expected to be affected by the fact that kerosene has a lower thermal conductivity when 
compared with water, and we attempt to investigate the heat transfer rate reduction as a function of the kerosene layer relative 
thickness. The theoretical predictions here obtained are critically compared with previous numerical results available in the open 
literature. 
 
1. Introduction 

 
The majority of the works about annular flow in the archival l iterature has given emphasis to the gas-liquid flow 

situation. However, there are certain li quid-liquid annular concurrent flows of considerable practical interest, which 
nevertheless have received much less attention. Two such systems that are common in practice are the kerosene-water 
flow (Hasson et al., 1974, Ziviani et al., 1991) and water-oil flow (Bentwich and Sideman, 1964, Brauner, 1991, 
Vanegas Prada and Bannwart, 1999.a, Vanegas Prada and Bannwart, 1999.b, Angeli and Hewitt, 2000, Bannwart, 
2001). The first one, due to the contact of a less reactive fluid with the pipe wall, offers a reduction of corrosion 
processes and encrustation; the second one allows, due to the smaller viscosity and larger thermal conductivity of the 
fluid in contact with the duct wall, for the reduction in pumping power and for the enhancement of heat transfer. In fact, 
the transportation of a very viscous oil is in general achieved by heating the oil and thus reducing its viscosity, while 
providing insulation at the duct’s wall. This operation, however, involves a considerable inherent cost. An alternative to 
this long distance oil transportation problem has been the object of experimental and theoretical analysis (Brauner, 
1991, Oliemans et al., 1987, Vanegas Prada and Bannwart, 1999.a, Vanegas Prada and Bannwart, 1999.b, Bannwart, 
2001), and the most promising proposal seems to be exactly the injection of a less viscous liquid (water) around the duct 
wall so as to establish an annular less viscous flow region. It has been demonstrated (Everage, 1973) that a complete 
encapsulation of the more viscous fluid makes it possible to minimize viscous dissipation as well, leading to a reduced 
energy loss. Vanegas Prada and Bannwart (1999.a) compared the core flow technology with the other alternatives for 
heavy oil production and concluded that core flow li ft of heavy oil i s quite viable and advantageous. An experimental 
apparatus for the study of core annular flows of heavy oil and water were developed by Vanegas Prada and Bannwart 
(1999.b). They also developed a model for upward core annular flow, from experimental measurements of pressure 
difference and based on a simple theoretical approach. Recently, further studies based on mass and momentum balances 
were developed for volume fraction and pressure drop and compared with avail able data for both horizontal and vertical 
oil-water core flow (Bannwart, 2001).  
 In gas-liquid systems, the laminar flow regimen in the liquid occurs within a narrow range of entrance conditions 
or, in other words, to within a low mass flow rate ratio between the gas and the li quid (Nogueira et al, 1990). On the 



 2 

other hand, for liquid-liquid systems the laminar flow regimen is observed within a large range of values of mass flow 
rates in both fluids (Hasson et al., 1974, Brauner, 1991). In terms of modeling, this physical observation results in a 
feasible analytical determination of the velocity profiles in both regions through direct integration. Nevertheless, a very 
limited number of previous contributions attempted to analytically solve the problem of forced convection in the 
annular liquid-liquid annular flow configuration, even for laminar regimen. Few exceptions are the works by Bentwich 
and Sideman (1964) and Leib et al. (1977). The first one considered the heat transfer problem, supposing the horizontal 
flow of water-oil, with a uniform temperature at the wall of the duct; the second one studied the problem for vertical 
flow of kerosene-water with a prescribed heat flux as boundary condition. Bentwich and Sideman (1964) concluded, in 
despite of the simplification made to represent the horizontal flow as annular, that a heat exchanger using the water-oil  
pair would be much more efficient, for a given duct length, than a heat exchanger with oil only, because of the 
significant heat transfer enhancement offered by the water annulus. Leib et al. (1977) demonstrated that the developed 
theoretical model described adequately the thermal entrance region temperature field when the flow is not disturbed, 
i.e., when the flow does not present waves at the interface between the liquids.  

Within this context, the present contribution advances the analytical treatment of two-phase liquid-liquid annular 
flow and heat transfer within a vertical circular tube, by analyzing the thermal entrance region development, making use 
of the integral transform method (Mikhailov and Ozisik, 1984, and Cotta, 1993). From the analytical expressions for the 
fully developed velocity fields, the coupled energy equations for the liquid streams are solved, by considering a 
multiregion eigenfunction expansion (Cotta & Nogueira, 1988), following previous developments for gas-liquid annular 
flows (Nogueira et al, 1995, 1996). The general analytical solution so obtained is then applied to the analysis of a 
situation dealing with corrosion and fouling effects reduction, by using a kerosene flow between the wall and water core 
inside a vertical circular duct, in the laminar regimen. In this system, the heat transfer to the core is expected to be 
affected by the fact that kerosene has a lower thermal conductivity when compared with water, and we attempt to 
investigate the heat transfer rate reduction as a function of the kerosene layer relative thickness.  
 
2. Analysis 
 

We consider the concurrent annular vertical flow of two immiscible liquids, flowing in concentric regions within a 
circular tube. Steady state laminar forced convection with incompressible hydrodynamically developed flow, with 
constant physical properties, has also been assumed. Viscous dissipation, axial conduction and natural convection 
effects are neglected. The following two sections present, respectively, the flow and heat transfer problems solutions, 
which are decoupled in light of the above simplifying assumptions.  
 
2.1. Annular Liquid-Liquid Flow 
 
 Nogueira et al. (1990, 1995) have demonstrated that under laminar fully developed annular flow the velocity 
profiles in the two regions (two liquids) within a circular tube are analytically given by: 
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where in the present application the index 1 stands for the water core, and the index 2 is related to the kerosene 

surrounding annulus. From integration of the above equations we obtain (n=1 for a circular tube): 
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The average velocity and single-phase velocity profile, to be used in comparisons, are obtained from  
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where the asterisk indicates the single-phase flow situation. 
 
2.2. Heat Transfer Problem  
 

The general formulation of the thermal problem is established through the following coupled energy equations and 
their corresponding initial, interface and boundary conditions: 
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where α  and β  are constants util ized to reproduce different boundary conditions at the wall )( 2rr = . Therefore: 

a) wTz =⇒== )(0,1 φβα           - Prescribed temperature 

b) )()(1,0 zqz w=⇒== φβα     - Prescribed heat flux  

 
 In addition, the model was held suff iciently general to include different geometries and the turbulent flow 
situation, for use in future contributions. The general dimensionless formulation of the problem is established through 
the foll owing equations of energy and their interface and boundary conditions: 
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 The various dimensionless groups appearing above are defined as: 
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where Prk and Prkt are the molecular and turbulent Prandtl numbers that relate the diffusivities of heat and momentum, 
incorporating both effects of eddies and waves, Z is the axial coordinate, θ is the dimensionless temperature, F(R) is the 
dimensionless inlet temperature distribution, Φ(Z) is the dimensionless prescribed boundary source function, C is the 
constant employed in the dimensionless velocity expression, l0 is the reference length (= r2), ln is another reference 
length (= 2r2), r0 is the channel centerline position (r0=0), r1 is the interface position, r2 is the channel wall position, 
Ehk(R) is the dimensionless thermal diffusivity of phase k, Etk(R) is the dimensionless momentum diffusivity of phase k, 
αk is the thermal diffusivity of the phase k, δ is the dimensionless interface position (=r1/r2), εmk is the turbulent 
diffusivity of phase k, εhk is the eddy diffusivity of phase k, µk is the viscosity of phase k, µ̂  is the viscosities ratio 

(=µ2/µ1), ρk is the density of the phase k, φ(z) is the boundary condition source term, νk is the kinematic viscosity of 
phase k, τk is the shear stress associated to phase k, τ is the interface shear stress, and finallyα  and β  are prescribed 

coefficients that recover the wall boundary conditions type, i. e., prescribed temperature, prescribed heat flux or 
convective type. 

The solution of the dimensionless problem defined above is obtained through application of the integral transform 
technique (Mikhailov and Ozisik, 1984, and Cotta, 1993): 
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where Ni , fi and gi(Z) are expressions defined by 
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 Due to a possible slow convergence behavior of the related infinite series defined through eq. (8.a), especially for 
the case of a prescribed heat flux boundary condition (α =0, β =1), it is convenient to rewrite the solution of our 

problem through an analytical “Splitting-up” procedure (Mikhail ov and Özisik, 1984), in the form: 
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where the dimensionless average temperature, )(Zθ , is defined as  
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The solution of the homogeneous problem within the entrance region, ),,( ZRkZθ  is obtained as  

 

 







µ

−
ψ

=θ β−
∞

=
∑ 2

i

i
i

Z

1i i

ki
kZ

)Z(g
fe 

N

)Z(
)Z,R(

2
i   (13) 

where 

 2

2

2
i

n

o
i C

l

l
βµ 








=   (14) 

 
Finally, the component θko(R) is analyticall y determined to yield: 
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From the temperature distribution, eq. (11), the heat transfer coeff icient at the channel wall can be evaluated, for 

instance, in the case of a prescribed wall heat flux condition, as: 
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or, yet, the equivalent dimensionless form in terms of the Nusselt number 
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For thermally developed flow (Z→∞) we then have 
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For the particular application here considered, we have βk=0 (no mass transfer at the interface). Moreover, 

turbulence and waves effects are suppressed from the simplified equations for laminar flow, and Ehk(R)=1. Also, the 
eigenvalue problem is solved through the computational procedure described by Cotta and Nogueira (1988). 

The parameter C, that appears in eq. (6.a), is here defined to allow for comparisons with the single-phase flow 
results: 
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and *u  has already been defined by eq. (4.b). Then, 
 
C = 2.0 (17.c)  

 
For a consistent analysis and comparisons between single-phase and two-phase flows it is necessary to employ the 

following dimensionless distance: 
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This definition becomes necessary since Z is a function of the interface position and does not represent, for distinct 

experiments, the same physical position in relation to the entrance of the duct; so, with Z* we can perform a consistent 
comparison between single- and two-phase systems. 
 
3. Results and discussion 
 
 The present work is concerned with the analytical solution for thermally developing forced convection in the 
laminar regimen of a liquid-liquid two-phase annular flow. The situation considered for analysis deals with a water-
kerosene two-phase flow previously studied by Hasson et al. (1974) and Leib et al. (1977). The specific physical cases 
here computed are summarized in Table 1, as extracted from the flow data in Leib et al.(1977) and calculated to match 
the definitions here considered. Some minor differences may be observed, from the equivalent table in the original 
reference, due to some uncertainties on the fluids physical properties. Figures 1.a-c illustrate the velocity profiles for the 
cases analyzed, each for a fixed volumetric flow rate of water and variable flow rate of the kerosene. These local 
distributions are important in the interpretation of the heat transfer results to be shown in what follows. 
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      Table 1 – Main data and flow parameters for the cases analyzed, as obtained from Leib et al. (1977) 
 

EXP Q1 (l/min) Q2 (l/min) -dp/dz (N/m3) δ 1u  (m/s) 2u  (m/s) eR  
A2 
B2 
C2 

2.03 
2.03 
2.03 

2.45 
2.05 
1.50 

9508 
9552 
9617 

0.693 
0.723 
0.765 

0.896 
0.823 
0.735 

1.001 
0.913 
0.769 

8029 
7412 
6515 

A3 
B3 
C3 

2.70 
2.70 
2.70 

2.45 
2.05 
1.50 

9592 
9628 
9678 

0.705 
0.732 
0.776 

1.151 
1.070 
0.951 

1.036 
0.936 
0.801 

9320 
8727 
7841 

A4 
B4 
C4 

3.45 
3.45 
3.45 

2.45 
2.05 
1.50 

9676 
9704 
9741 

0.717 
0.744 
0.785 

1.426 
1.325 
1.185 

1.068 
0.972 
0.833 

10785 
10168 
9263 

B5 2.70 2.05 9581 0.756 1.017 0.997 8372 
 

 

 

Figure 1.a – Fully developed velocity field in vertical annular liquid-liquid flow of water-kerosene. 
Flow rate and experimental data as provided by Leib et al. (1977) and Hasson et al. (1974). 

 

 

Figure 1.b – Fully developed velocity field in vertical annular liquid-liquid flow of water-kerosene. 
Flow rate and experimental data as provided by Leib et al. (1977) and Hasson et al. (1974). 
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Figure 1.c – Fully developed velocity field in vertical annular liquid-liquid flow of water-kerosene. 
  Flow rate and experimental data as provided by Leib et al. (1977) and Hasson et al. (1974). 
 
 Before attempting to employ the developed solution for the physical analysis of the problem, a thorough validation 
of the constructed computer code was conducted. The numerical results obtained through application of the integral 
transform technique are first critically compared against benchmark results available in the literature for the single-
phase situation (Cotta & Ozisik, 1986). In fact, the validation is performed through comparison for the single fluid 
solution, when the present problem was approximately solved for a relative interface position of δ = 0.9999 in a circular 
tube. Table 2 then presents results for the local Nusselt number along the thermal entry region, for a wide range of the 
longitudinal coordinate, initially for the single fluid situation, as represented by the second and third columns of this 
tabulation. The numerical results have then demonstrated that the present model is consistent and precise, while tending 
to the single fluid benchmark solution as the relative interface position approaches the wall. A set of reference results is 
also presented in this table for a few other cases considered by Leib et al. (1977), according to their data in Table 1.
  
Table 2 – Validation of local Nusselt number results with single phase flow benchmark results and present numerical 

results for physical situations considered by Leib et al. (1977).  
 
Z*  Single Phase Flow 

Cotta & Ozisik (1986) 
Present-ITT 
δ = 0.9999 

A2 B2 C2 B3 B5 

0.000001  129. 21 128. 23 42. 71 43. 96 45. 58 42. 22 10. 994 
0.000002  102. 36  101 .90 33. 85 34. 86  36. 14  33. 49  10. 313 
0.000003 89.309  88.94  29.54  30.42 31.54  29.22 9.883 
0.000005 75. 191 74. 92 24. 87 25. 62 26. 55 24. 61  9. 310 
0.000010  59. 510 59. 33 19. 69 20. 28 21 .02 19. 48 8. 490 
0.000020 47. 077 46. 96 15. 58 16. 05 16. 63 15. 41 7. 637 
0.000030 41 .037 40. 95  13. 58 13. 99 14. 49 13. 43  7. 132 
0.000050  34. 511  34. 45  11 .42  11 .76  12. 18 11 .29 6. 498 
0.000100  27. 276  27. 23 9. 02  9. 29  9. 62  8. 91 5. 656 
0.000200  21.558  21.53  7.12 7.34  7.59  7.03  4.856 
0.000300  18. 790  18. 77 6. 20 6. 39 6. 60  6. 12  4. 414 
0.000500  15. 813  15. 80  5. 21  5. 36  5. 54  5. 13  3. 890 
0.001000  12.538  12.53  4.11  4.23  4.36  4.04  3.245 
0.002000  9.9863  9.980  3.24  3.33  3.50  3.18  2.695 
0.003000  8.7724  8.768 2.80 2.90  2.99  2.76  2.426 
0.005000  7.4937  7.490  2.38  2.44  2.51  2.31  2.133 
0.0l0000  6.1481  6.146  1.89  1.94  2.01  1.84  1.805 
0.020000  5.1984  5.197  1.55  1.61  1.71  1.53  1.589 
0.030000  4.8157  4.814 1.42  1.49  1.62  1.43  1.521 
0.050000  4.5139  4.513  1.34  1.43  1.58  1.38  1.486 
0.100000 4.3748  4.373 1.32  1.41 1.57 1.36 1.479 
0.200000 4.3637 4.362  1.32  1.41  1.57  1.36  1.479 
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 We also perform a covalidation of the present model, Table 3, through a comparison of the present results against 
two other solutions presented by Leib et al. (1977). In that work, the authors obtained asymptotic solutions for both the 
entry region, close to the tube inlet, and for large longitudinal distances. The matching of these two solutions, in an 
approximate sense, offered a third solution and the recommended model in their work. Theoretical and experimental 
results were then obtained for a tube of 1.0 cm diameter and 1.0 m length, for an applied wall heat flux of 17,440 W/m2.  
Therefore, table 3 below presents three columns of results, the first one related to the asymptotic entry region solution in 
Leib et al.(1977), the second for their matched solution, and the third corresponds to the present fully converged integral 
transform results. Clearly, the asymptotic solution for the entry region may degenerate for some of the situations 
considered, but the overall agreement with the matched solution is very good. 
  
Table 3 – Comparison of local Nusselt results obtained through the Integral Transform Technique and two approximate 

solutions proposed by Leib et al.(1977). 
 

z = 0.25 m z = 0.75 m z = 0. 50 m Experimental 
Entry*  Matching* I.T.T. Entry*  Matching* I.T.T. Entry*  Matching* I.T.T. 

A2   f1=28.4 
        f2=28.4 

NA 29.43 30.88 22.67 21.09 21.97 10.66 10.64 10.60 

B2   f1=28.4 
        f2=28.4 

NA 29.82 30.96 23.22 21.56 22.23 11.76 11.76 11.68 

C2   f1=28.4 
        f2=28.4 

NA 30.20 30.96 24.19 22.33 22.73 13.75 13.75 13.64 

A3   f1=27.7 
        f2=27.7 

NA 29.79 31.42 22.96 21.41 22.38 10.85 10.85 10.82 

B3   f1=27.7 
        f2=27.7 

NA 30.01 31.36 23.44 21.79 22.55 11.90 11.82 11.84 

C3   f1=27.7 
        f2=27.7 

NA 30.77 31.53 24.72 22.87 23.23 14.14 14.14 14.07 

A4   f1=27.7 
        f2=27.7 

NA 30.25 31.96 23.38 21.82 22.79 11.15 11.10 11.10 

B4   f1=27.7 
        f2=27.7 

NA 30.53 31.95 23.86 22.22 23.02 12.24 12.22 12.20 

C4   f1=27.7 
        f2=27.7 

NA 31.43 32.11 25.29 23.44 23.74 14.61 14.59 14.53 

B5   f1=28.5 
        f2=51.9 

NA 30.49 30.32 25.48 21.79 21.70 13.23 13.21 13.04 

*Leib et al. (1977) – Entry (Asymptotic solution for entry region) & Matching (Matched solution between the two asymptotic estimates)  

 
Figure 2 il lustrates, comparatively, the local Nusselt number axial distributions for two of the cases considered by Lieb 
et al. (1977), and a limiting result representing the single-flow analysis. From Fig. 2 below and also from Table 2 above, 
it can be observed that the kerosene layer offers a significant resistance to heat transfer. The two-phase flow situations, 
however, do not present a significant deviation between them, motivating the analysis that follows. 

 
Figure 2 – Comparison between single phase and water-kerosene systems according to Leib et al. (1977) for heat 

exchange in the thermal entry region and considering constant heat flux in the wall tube. 
 

____________ Single Phase Flow (δ = 0.9999) 
------------ Experimental A2 
__ __ __ __ __ Experimental C4 



 10 

 The comparative results, shown in Table 2 and fig.2 above, lead to different conclusions than those obtained by 
Leib et al. (1977), in certain aspects. Their analysis predicted a relatively large entry length for the two-phase flow 
system, at least one order of magnitude greater than that encountered in single-phase flows. In fact, the results here 
obtained demonstrate that the temperature field becomes developed at a smaller duct length, for the kerosene-water 
systems analyzed, when compared to a single-phase flow considering equal entry temperature and equivalent 
volumetric flow rate.  
 Figures 3.a-c show the effect of f low rate and kerosene annulus relative thickness on the heat transfer behavior of 
the two-phase system. It can be noticed that the heat transfer coefficient is more pronounced for the larger values of 
kerosene flow rate in the region very close to the tube inlet, as expected; however, with decreasing flow rate of kerosene 
and, consequently, smaller values of the kerosene thickness, bulk temperatures more rapidly approach the wall 
temperature, which results in larger heat transfer coefficient for a thermally developed regime with a prescribed wall 
heat flux. Thus, it may be concluded that the heat transfer reduction effect may be minimized through an adequate 
choice of the flow rates ratio. In fact, this effect can be investigated, for a given water flow rate, with the help of f igs.1; 
there is a minimum kerosene flow rate for a fixed water flow rate, for which the annular regime remains achievable and 
flow-reversal does not occur, as previously discussed by Hasson et al. (1974). 
 
 

 
Figure 3.a – Effect of the flow rate and kerosene annulus relative thickness on the heat exchange in annular water-

kerosene flow with constant wall heat flux (cases considered by Lieb et al., 1977). 
 

 

 
Figure 3.b – Effect of the flow rate and kerosene annulus relative thickness on the heat exchange in annular water-

kerosene flow with constant wall heat flux (cases considered by Lieb et al., 1977). 
 

 As shown in figure 4, a critical comparison with the experimental data of Leib et al. (1977) makes it clear that the 
theoretical model underestimates the heat transfer coefficient. This fact, according to Leib et al. (1977), can be partially 
justified by the waves that were experimentally observed at the two fluid streams interface. Another fact to be 
considered,  not actually discussed in previous analyses (Leib et al., 1977), is that the imposed conditions at the present 
flow examples, yield higher Reynolds numbers than those expected for transition in single fluid flow in circular tube, 
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according with the values shown in table 1. When the effective Reynolds number decreases, the differences between 
experimental and theoretical results for the heat transfer coefficient also decrease. The approach advanced in this work, 
however, can not be extended to confirm this observation. Nevertheless, Leib et al.(1977) briefly reported that the 
experimental data obtained are near the transition region.  
 

 

Figure 3.c – Effect of the flow rate and kerosene annulus relative thickness on the heat exchange in annular water-
kerosene flow with constant wall heat flux (cases considered by Lieb et al., 1977).   

  
Figure 4 – Comparison between experimental results (Leib et al., 1977) and present theoretical predictions for 

temperature profil e in the thermal entry region.  
  

4. Conclusions 

 
 The present work advances a theoretical model in the representation of thermally developing laminar forced 
convection in liquid-liquid annular flow, utilizing the integral transform technique. It can be conclude that the present 
integral transform solutions are more adequate in representing such temperature fields than the previous models 
reported in the open literature. The approach proposed here has also been extended to more complex two-phase flow 
situations than in fact that investigated in the present work, such as in an annular gas-liquid flow (Nogueira, 1993). The 
analytical solutions so obtained find usefulness as limiting situations for physical analysis, as well as benchmark results 
for the verification of more general models and/or numerical codes. Nevertheless, critical comparisons with few 
experimental results available indicate that some modeling extensions might be feasible under the same analytical 
framework, in order to improve the model adherence to the experimental findings. 

 

__________ Experimental  z = 0.25 m 
---------- Experimental  z = 0.75 m 
__ __ __ __  Theoretical      z = 0.25 m 
___ ___ ___ Theoretical      z = 0.75 m 
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