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Abstract. This work is a first step toward the large-eddy simulation of finite wedge-rectangle. In this work, the test case is a semi-
infinite wedge-rectangle, composed by adjoining a finite wedge with a semi-infinite rectangle. For this geometry, analytic results for 
the normal shock are available for detached shocks and the same kind of results are available for the attached oblique shock and the 
isentropic expansion produced by the wedge-rectangle geometry. These analytical results are obtained considering the flow as 
inviscid, and for this reason, a full slip condition is imposed in the wedge-rectangle wall. The numerical results agree very well with 
the analytical ones in almost all the simulated Mach numbers. 
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1. Introduction 
 

This work is a first step toward the large-eddy simulation of the supersonic flow over a finite wedge-rectangle. The 
large-eddy simulation of complex compressible flows, with strong interaction between shock and turbulent wakes, is 
still a challenge for the scientific community. Even in simple configurations, this kind of flows undergoes rapid changes 
such as dramatic amplifications of turbulence levels after the shock and loss of isotropy. There are few examples of this 
kind of work (Garnier et al., 2002). In this context, it is mandatory to validate the compressible code with analytical 
results for supersonic flows in order to separate the effects of steady-state compressible flow from compressible, time 
dependant, large-eddy effects. 

In this work, the test case is a semi-infinite wedge-rectangle, composed by adjoining a finite wedge with a semi-
infinite rectangle. For this geometry, analytic results for the normal shock are available for detached shocks and the 
same kind of results are available for the attached oblique shock and the isentropic expansion produced by the adjoined 
wedge-rectangle geometry. These analytical results are obtained considering the flow as inviscid, and for this reason, a 
full slip condition is imposed in the wedge-rectangle wall. With this boundary conditions and geometry, the sub-grid 
turbulence model will act solely as a numerical viscosity, controlling the numerical oscillations induced by the strong 
gradients across the shock. The numerical results obtained are compared with the analytical results available for each 
simulated Mach number. 

 
2. Mathematical model and numerical method 
 

Since this work is a first step toward the large-eddy simulation of the flow in a finite two-dimensional wedge-
rectangle, the mathematical model used in this work is for the large-scale field. To obtain the large-scale field, the 
equations of continuity, momentum, and energy are filtered using the classical “box” filter (Clark et al., 1979). The 
resulting equations are (Garnier et al., 2002) 
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The straight over bar refers to the filtered variable using the “box” filter and the curved one refers to the filtered 

variable using the Favre filter (Anderson et al., 1984). This filter is based in the “box” filter and results in a filtered 
variable weighted by the density, defined as 

 
ρρφφ =

~  (5) 
 
The other symbols as their usual meanings, i.e., xi is the spatial coordinate in the i direction, t is the temporal 

coordinate, ρ is the density, ui is the component of the velocity in the i direction, p is the pressure, T is the temperature, 
µ is the molecular dynamic viscosity and Sij is the viscous-strain tensor, given by 
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It is important to note that the second term of the viscous-strain tensor is a function of the divergence of the vector field 
that physically represents the time rate of change of the volume of a moving fluid element, per unit volume. This term 
will be especially high when the fluid element passes through a shock wave. The specific total energy (total energy per 
unit mass), et, is calculated as 

 

2

~~~~~~ ii
kt

uueeee +=+=  (7) 

 
where e and ek represents the specific internal and kinetic energy, respectively. The working fluid is air, considered a 
calorically and termally perfect gas. In this case, the relation between the temperature and the specific internal energy is 
given by 
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where γ is the specific heats ratio and R is the gas constant. Air is also considered a perfect gas, so the state equation is 

 
TRρp ~

=  (9) 
 

and the molecular dynamic viscosity is given by the Sutherland law (Schlichting, 1968): 
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where 4,0=C , which corresponds to a reference temperature of 276 K. 

The effect of the sub-grid scales is accounted using the Smagorinsky (1963) sub-grid model, where the turbulent 
dynamic viscosity is given by 

 
( ) ijijSt SS∆Cρµ ~~22=  (11) 

 
It is important to note that the turbulent viscosity will have a non-zero value in the shock waves, due to the dependence 
of the viscous-strain tensor, ijS~ , on the divergence of the vector field, as mentioned above.  This implies that the 
introduction of a sub-grid model will affect the flow in the shock waves, making mandatory a comparison between the 
numerical and analytical results in order to evaluate how the sub-grid model affects the flow.  The relation between the 
turbulent viscosity and the turbulent conductivity, kt, is obtained using the turbulent Prandtl number, Prt, in the form 
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The boundary conditions at the wall of the wedge-rectangle used is this work is full slip. This boundary condition is 

imposed in order to compare the numerical results with the analytical results for the normal shock, oblique shock and 
the Prandtl-Meyer expansion. It is important to note that these analytical results where obtained considering an inviscid 
flow. For this reason, it is important to emulate this restriction using a full slip condition at the wall. Otherwise, a 
boundary layer will be generated, and it presence will slightly alter the results since the potential flow will se a slightly 
different wedge-rectangle. The mathematical model represented by Eq. (1) to Eq. (11) is solved using MacCormack’s 
(1969) explicit predictor-corrector algorithm in its finite volume formulation. This method has a second-order precision  
in space and time. 

 
3. Numerical implementation 
 

Figure (1) presents a detail of the computational grid used in all cases. It is important to notice that only 1/6 of the 
wedge surface is shown. The angle θ of the wedge is 18.43°, resulting from the relation 1/3 between the height and the 
length of the wedge. The former size is 0.1 m and the last is 0.3 m. The adjoining rectangle has the same height and it 
length is 9.7 m. The origin was located at the leading edge of the wedge. The grid extends from the points (-2.0, 0.0) to 
(98.0, 1.0) in the direction of the flow, containing 650 control volumes, and from the points (-2.0, 0.0) to (-2.0, 100.0) in 
the direction normal to the flow, also containing 650 control volumes.  The region of regular mesh is contained between 
the points (-2.0, 0.0), (7.0, 1.0), (-2.0, 10.0) and (7.0, 10.0), with 450 control volumes in the direction of the flow and 
500 control volumes in the direction normal to the flow.   

The total number of control volumes is 422,500, witch 225,000 are located in the regular-mesh region, resulting in a 
problem with 1,690,000 degrees of freedom.  The code was run in an AMD Athlon 1.33 GHz workstation, with a mean 
of 1.5 CPU seconds per iteration. A typical run consisted in 30,000 iterations, resulting 12.5 hours of CPU time. 

  

 
 

Figure 1. Detail of the computational grid used for all cases. Only 1/6 of the wedge surface is shown. The oblique shock 
for 0.2=∞M  appears in the background. 
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4. Results 
 

The code was run for six different Mach numbers: 1.5, 1.65, 1.8, 2.0, 2.6 and 5.0. From the analytical solution, 
based on the M−− βθ relation (Anderson, 1990) and given by 
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it can be seen that for the first two Mach numbers the shock must be detached, since the value of o43.18=θ  is grater 
than the value of maxθ  given by the M−− βθ  diagram. For the other four Mach numbers, the shock is oblique and 

attached, since value of o43.18=θ  is lesser than the value of maxθ  given by the same diagram. Figures (2), (4), (6), (8), 
(10) and (12) show the pressure coefficient field, pC , given by 
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In this work, the values of the undisturbed thermodynamics properties used are 300,101=∞p  Pa and 300=∞T  K. 

In Figs. (2) and (4), the shock is clearly detached and in Figs. (6), (8), (10) and (12), the shock is oblique and 
attached. It can be seen from the M−− βθ  diagram that the transition value for the Mach number, from detached to 
attached, is approximately 1.77. This value that is between 65.1=∞M , corresponding to Fig. (4), and 80.1=∞M , 
corresponding to Fig. (6). In Tab. (1) are presented the shock angle β  at the symmetry line for numerical ( )N  and 
analytical ( )A  results for different Mach numbers. This angle is calculated graphically from Figs. (2), (4), (6), (8), (10) 
and (12). The analytical value for Figs. (2) and (4) is 90.0°, since the shock is detached. The analytical values for Figs. 
(6), (8), (10) and (12) are calculated using M−− βθ  diagram. 

In Tab. (2) are presented the pressure coefficient at compression ( )
CpC  and expansion ( )

EpC  for numerical and 
analytical results for different Mach numbers. The numerical values were obtained from Figs. (3), (5), (7), (9), (11) and 
(13). In this figures, the value of pC  shown are in the upwind symmetry line (from 0.2−=x  to 0.0=x ), the wedge 
wall (from 0.0=x  to 0.3=x ) and the adjoining rectangle wall (from 0.3=x  to 0.7=x ). The analytical results for 
the pressure coefficient at compression ( )

CpC  were obtained using the normal shock relations for the Mach numbers 

50.1=∞M  and 65.1=∞M  (since the shock is detached) and M−− βθ  diagram for the other Mach numbers (since 
the shock is attached and oblique). The analytical results for the pressure coefficient at expansion ( )

EpC  over the 
adjoining rectangle were obtained using the Prandtl-Meyer function (Anderson, 1990), given by 
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It is important to mention that only in the case of attached oblique shocks it is possible to calculate analytically the 

properties after the expansion using the Prandtl-Meyer function, since the value of the properties remain constant over 
the wedge wall only in the case of the attached shock, as shown in Figs. (7), (9), (11) and (13). In Figs. (3) and (5), it 
can be seen that after the normal shock at the symmetry line, all properties change along the flow direction. 

Tables (3) and (4) present the numerical and analytical results for the nondimensional temperature and Mach 
number at compression and expansion, respectively. The methodology for obtaining the analytical results is identical to 
the one use to generate Tab. (2). The numerical results where extracted from figures for nondimensional temperature 
and Mach number, similar to Figs. (3), (5), (7), (9), (11) and (13), that are not presented in this work, due to space 
limitations. 
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Figure 2. pC  field for 50.1=∞M . Maximum value corresponds to red and minimum to blue. 
 

 
 

Figure 3. pC  values for 50.1=∞M  over the symmetry line ( )0=y  and over the wedge-rectangle surface. 
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Figure 4. pC  field for 65.1=∞M . Maximum value corresponds to red and minimum to blue. 
 

 
 

Figure 5. pC  values for 65.1=∞M  over the symmetry line ( )0=y  and over the wedge-rectangle surface. 
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Figure 6. pC  field for 80.1=∞M . Maximum value corresponds to red and minimum to blue. 
 

 
 

Figure 7. pC  values for 80.1=∞M  over the symmetry line ( )0=y  and over the wedge-rectangle surface. 
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Figure 8. pC  field for 00.2=∞M . Maximum value corresponds to red and minimum to blue. 
 

 
 

Figure 9. pC  values for 00.2=∞M  over the symmetry line ( )0=y  and over the wedge-rectangle surface. 
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Figure 10. pC  field for 60.2=∞M . Maximum value corresponds to red and minimum to blue. 
 

 
 

Figure 11. pC  values for 60.2=∞M  over the symmetry line ( )0=y  and over the wedge-rectangle surface. 
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Figure 12. pC  field for 00.5=∞M . Maximum value corresponds to red and minimum to blue. 
 

 
 

Figure 13. pC  values for 00.5=∞M  over the symmetry line ( )0=y  and over the wedge-rectangle surface. 
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Table 1. Shock angle at the symmetry line for numerical ( )N  and analytical ( )A  results for different Mach numbers. 

 
∞M  Nβ  Aβ  ( )βε  

1.50 90.0° 90.0° 0.00% 
1.65 90.0° 90.0° 0.00% 
1.80 59.1° 59.2° -0.12% 
2.00 50.0° 50.7° -1.38% 
2.60 39.9° 39.6° +0.76% 
5.00 28.1° 28.0° +0.36% 

 
Table 2. Pressure coefficient at compression and expansion for numerical ( )N  and analytical ( )A  results for different 

Mach numbers. 
 

∞M  ( )
NpC

C  ( )
ApC

C  ( )
CpCε  ( )

NpE
C  ( )

ApE
C  ( )

EpCε  

1.50 0.9456 0.9257 +2.15% - - - 
1.65 1.0921 1.0545 +3.57% - - - 
1.80 0.7178 0.7154 +0.34% 0.0030 0.0028 +0.03% 
2.00 0.5757 0.5815 -1.00% 0.0082 -0.0039 +2.07% 
2.60 0.4335 0.4306 +0.67% 0.0053 0.0041 +0.28% 
5.00 0.2986 0.3007 -0.70% 0.0046 0.0027 +0.64% 

 
Table 3. Nondimensional temperature at compression and expansion for numerical ( )N  and analytical ( )A  results for 

different Mach numbers. 
 

∞M  ( )NC TT ∞  ( )AC TT ∞  ( )∞TTCε  ( )NE TT ∞  ( )AE TT ∞  ( )∞TTEε  
1.50 1.3258 1.3259 -0.01% - - - 
1.65 1.4347 1.4230 +0.82% - - - 
1.80 1.3612 1.3513 +0.73% 1.0544 1.0278 +2.58% 
2.00 1.3490 1.3524 -0.25% 1.0561 1.0230 +3.24% 
2.60 1.4198 1.4280 -0.57% 1.0665 1.0453 +2.03% 
5.00 2.0018 1.9906 +0.56% 1.3790 1.2037 +14.56% 

 
Table 4. Mach number at compression and expansion for numerical ( )N  and analytical ( )A  results for different Mach 

numbers. 
 

∞M  ( )NCM  ( )ACM  ( )CMε  ( )NEM  ( )AEM  ( )EMε  
1.50 0.6882 0.7011 -1.84% - - - 
1.65 0.6231 0.6540 -4.72% - - - 
1.80 1.0428 1.0481 -0.51% 1.6790 1.7371 -3.34% 
2.00 1.2871 1.2867 +0.03% 1.8734 1.9232 -2.59% 
2.60 1.8004 1.7988 +0.09% 2.4541 2.5002 -1.84% 
5.00 3.1322 3.1734 -1.30% 4.1796 4.4635 -6.36% 

 
6. Conclusions 

 
The variable ε  that appears in Tabs. (1), (2), (3) and (4) represent the relative error between the numerical and 

analytical values. These last values were obtained using the normal shock relations for the detached shock, and the 
M−− βθ  diagram and the Prandtl-Meyer function for the oblique attached shock. From an inspection of these tables 

it can be concluded that the numerical results agree very well with the analytical ones in almost all the simulated Mach 
numbers, since the maximum relative error is around 3%. The only exception is for 00.5=∞M , where the maximum 
relative error is 14.56% for the temperature at the expansion. But, it is important to note that this high level of error 
occurs only at the expansion and only for the temperature and Mach number (that strongly depends on the temperature). 
For this Mach number the results for the pressure coefficient are very good. This fact can be explained looking at Figs. 
(12) and (13). It can be observed a high level of numerical oscillation after the compression and the expansion. It must 
be noted that the value of the Smagorinsky constant used in all the other Mach numbers is 5,0=SC , and this value is 
enough to maintain the numerical stability of the code. In the other hand, a value of 8,0=SC  was necessary to maintain 
the numerical stability for 00.5=∞M . This is a direct result of the high level of inclination of the oblique shock for the 
fixed grid used in this work, shown in Fig. (1). From the results presented in this work, it can be concluded that the 
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introduction of sub-grid scale model affects the code in a positive way, augmenting its numerical stability and reducing 
the oscillations that are typical of second-order methods. This can be clearly seen in Figs. (3) and (5), where the normal 
part of the detached shocks has no oscillations at all. In the later case, 65.1=∞M , the shock strength is the higher of 
all cases analyzed. This is a direct result of the numerical viscosity also being a function of the divergence of the 
velocity field, which has a non-zero value in the shock. As it was mentioned above, the numerical oscillations that are 
observed in the case of the oblique attached shocks are function of the inclination of the shock in relation to the grid. 
There is no relative inclination in Figs. (3) and (5) up to the value  0.0=x . This problem can be solved using a grid 
that conforms better to the geometry of the shock, reducing in this way the relative inclination between them. Finally, it 
is concluded that the code is ready for the next phase of this work, which is the large-eddy simulation of a finite wedge-
rectangle, due to the fact that the introduction of a sub-grid model affects the code in the positive ways described above. 
A preliminary result of this phase is presented in Fig. (14). 

 

 
 

Figure 14. Preliminary results for the large-eddy simulation of a finite wedge-rectangle. 
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