
IX CONGRESSO BRASILEIRO DE
ENGENHARIA E CIÊNCIAS TÉRMICAS

9th BRAZILIAN CONGRESS OF THERMAL

ENGINEERING AND SCIENCES

Paper CIT02-0021

MAXIMUM ENTROPY PDFS UNDER NEAR-EQUILIBRIUM CONDITIONS

Ernani V. Volpe

Department of Mechanical Engineering, University of Sao Paulo

Av. Prof. Mello Moraes, 2231, CEP 05508-900, Sao Paulo - SP, Brazil

ernani.volpe@poli.usp.br

Abstract. Since its inception, the maximum entropy method has been perceived as a potential tool for investigating the

near-equilibrium region in kinetic theory of gases, thus providing an alternative to the more traditional small disturbance

expansions, such as Chapman-Enskog and Grad's method. However, it became clear early on that one would have to

overcome some major mathematical di�culties, before that goal could be achieved. Chief among these di�culties is the

so-called moment problem, which consists of solving for the probability density function (pdf) parameters in terms of its

moments. Although it can be solved by means of numerical methods, the application outlined above requires an analytical

solution. This work presents a method for obtaining an analytic solution to the moment problem associated with maximum

entropy pdfs. This method allows one to express pdf parameters in terms of constrained moments, alone. The results

thus obtained hold for pdfs that represent small perturbations from a known pdf within this class. Since the Maxwellian

is itself a maximum entropy pdf, the method e�ectively opens up the possibility of using this class of pdfs to investigate

the near-equilibrium region.
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1. Introduction

According to kinetic theory, the thermodynamic state of a gas is characterized by the distribution of thermal
velocities of its molecules and its number density (Vincenti and Kruger, 1986). Owing to the stochastic nature
of molecular interactions, this distribution represents a probability density function (pdf). Moments of thermal
velocities, in turn, represent macroscopic physical quantities, such as temperature, viscous stresses and heat
�ux, which are the usual variables of interest in the description of thermodynamic processes.

Hence, to specify the thermodynamic state of a gas in terms of the usual macroscopic quantities, one must
establish a relation between them and a thermal velocity distribution. Since the latter is a pdf, while the former
are statistical moments, the whole problem boils down to specifying a pdf that satis�es a set of conditions
imposed on its moments. On assuming that one can �nd a suitable analytic representation for this pdf, then its
speci�cation hinges on one's ability to evaluate the parameters that characterize that representation in terms
of its moments. This is the so-called moment problem (Lawrence et al., 1984).

Perhaps the most widely recognized example of the moment problem is that associated with a monatomic
perfect gas in thermodynamic equilibrium. Its thermal velocity distribution is Maxwellian (Vincenti and Kruger,
1986), and it is fully speci�ed by the absolute temperature of the gas. It is a well-known fact that the Maxwellian
represents a Gaussian pdf with zero mean. This pdf is speci�ed by a single parameter, which is a function of
the second order moment of thermal velocities, that is, a function of the absolute temperature of the gas.

The correspondence between the Maxwellian distribution and thermodynamic equilibrium is certainly one of
the most important theoretical results of kinetic theory of gases, and it has far reaching consequences throughout
the whole of thermodynamics. However, most �ows in nature involve non-equilibrium phenomena, and their
modeling requires other pdf representations. Over the years, a variety of methods were proposed to that end.
Most of them attempt to capture the physics of the near-equilibrium regime, that is, when departure from
equilibrium is small. This is partly because a large portion of problems of interest falls into that group, and
partly owed to conceptual di�culties associated with the very characterization of a thermodynamic state, when
departure from equilibrium is extreme.

A systematic review of those methods is presented in (Volpe, 2001). In addition to the well-known Chapman-
Enskog expansion and Grad's method, some alternative pdf representations are also considered. Among them,
the one proposed by Koopman, 1969, stands out as specially attractive.

Koopman proposed a pdf representation that is based on the maximum entropy method (mem). The main
reasons for its attractiveness lie in the conceptual foundations of the method and in certain properties of these
pdfs. As it is shown in detail in (Volpe, 2001), these pdfs do not exhibit negative excursions and the closure
relations they yield allow for interdependence between even and odd order moments.
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In essence, the mem is an inference tool that allows one to associate a pdf to a given set of moments with
minimum bias (Papoulis, 1991). It de�nes a functional that measures statistical entropy. Then, the pdfs are
gotten on maximizing this functional subject to constraints, which represent conditions that are imposed on a
set of moments.

In this work, we are primarily interested in a subgroup of maximum entropy pdfs that includes the repre-
sentation proposed by Koopman, 1969. These are pdfs for which one constrains moments of products of the
variables of interest. Given a generic random variable x, on prescribing the moments (h1i, hxii, hxixji, hxixjxki,
hxixjxkxli:::), one would get a pdf f(x) of the form:

�
f(x) = exp[� (x;�)]
 (x;�) = �0 + �ixi + �ijxixj + �ijkxixjxk + �ijklxixjxkxl + :::

(1)

where the parameters (�0; �i; �ij ; �ijk ; :::) are Lagrange multipliers that correspond to the constrained moments
listed above. It is worth noting that the Gaussian pdf belongs in this group, as can be seen by setting to zero
all parameters of order higher than two (�ijk = �ijkl = ::: = 0).

In e�ect, the � are the parameters that fully specify pdfs in this class. Thus, the moment problem for them
implies solving for the � in terms of constrained moments. However, the strong nonlinearity of eq. (1) poses
extraordinary di�culties to �nding the functional dependence between parameters and constrained moments.
Except for the simplest cases, such as the jointly Gaussian, this dependence is unknown. Obviously, one could
use numerical methods to tackle the problem. But numerical solutions do not provide much insight into this
functional dependence. Therefore, one cannot rely solely on them for the application considered here.

A small disturbance method was developed by Volpe, 2001, to overcome this di�culty. It allows one to
obtain an analytic solution to the moment problem, which is approximate in the sense of small disturbances.
E�ectively, it expresses pdf parameters in terms of constrained moments, and the results hold for pdfs that
represent small perturbations from a known pdf within this class. A prospective application for this method
would be to explore the near-equilibrium region. In principle, one can develop a small disturbance expansion
about the Maxwellian, and follow the steps proposed by Koopman to represent non-equilibrium e�ects such as
heat �uxes and viscous stresses.

The purpose of this paper is to present the small disturbance method and discuss its applications. Since the
subject involves the concept of moment problem and touches the subject closure relations, it is convenient to
start the discussion by proposing appropriate de�nitions for them. Then the relevant properties of these pdfs
are discussed and the method is presented. For the sake of simplicity, the 1-D case is presented �rst, followed
by the extension to multidimensional pdfs.

2. Formal De�nitions of the Moment Problem and Closure Relations

As presented by Bagano�, 1996, let us assume that a suitable analytic representation is chosen for a pdf.
This representation must be characterized by a set of parameters ak. If it is a convergent representation, then
one may assume as an approximation that ak = 0 for (k > N). Additionally, if one can carry out the integration
to obtain analytic expressions for the moments hxki = mk, then one would be able to express them as functions
of the parameters alone, mk = mk(a1; a2; :::aN ).

At least in principle, if the �rst N of these relations could be inverted, then one would be able to write the pdf
parameters in terms of the �rst N moments ak = ak(m1;m2; :::mN ). These expressions represent the solution
to the moment problem. If such solution is feasible, then one can substitute the ak = ak(m1;m2; :::mN ) into
the expressions for moments of order higher than N, mN+1 = mN+1(a1; a2; :::aN ). On doing so, one obtains
expressions of the form mN+1 = mN+1(m1;m2; :::mN ), which are the closure relations.

3. Properties of the Maximum Entropy PDFs

A central concept in this study is the partition function, which is de�ned as the normalization integral of
the pdf. For further clarity in introducing this and related concepts, it is convenient to change the de�nition of
 (x;�) =  (x) and treat the normalization parameter separately

�
f(x) =A exp[� (x)]
 (x) = �1x+ �2x

2 + :::+ �Nx
N (2)

where the constrained moments correspond to the set fh1i; hxi; hx2i; :::; hxN ig. Realizability implies that  (x)
is an even order polynomial (N = 2M), as discussed in (Volpe, 2001), and A stands for the normalization
parameter: A = e

��0 . The partition function Z is just the inverse of the normalization parameter A (Papoulis,
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1991),

Z =
1

A
= e

+�0 =

1Z
�1

e
� (x)

dx (3)

Clearly, the quantities Z, A and �0 depend only on pdf parameters �i, that is: Z = Z(�1; :::; �N ), A =
A(�1; :::; �N ) and �0 = �0(�1; :::; �N ). Moreover, under the conditions �i 2 < and �N > 0, where N is even,
the integral in eq.(3) is convergent (Volpe, 2001).

As mentioned above, the Gaussian corresponds to reducing  (x) to a second order polynomial: fG(x) =
A exp

�� ��1x+ �2x
2
��
. In fact, the Gaussian partition function is one of the few that is known in closed form:

ZG(�1; �2) =

r
�

�2
exp

�
�
2
1

4�2

�
(4)

Partition functions for other pdfs in this class are derived in (Volpe, 2001). However, they involve very
complicated series representations, which are not useful to our purposes.

The partition functions associated with these pdfs have very useful properties, which are discussed in detail
in (Volpe, 2001). Here, we shall focus on those that are relevant to our purposes. These are the moment
theorem, the equivalence relations and moment di�erentiation formulas, which are presented below.

3.1. Moment Theorem and Equivalence Relations

It is a well-known result that one can relate constrained moments to derivatives of the partition function
(Papoulis, 1991):

1

Z

@Z

@�k
= �mk (5)

where the notation mk = hxki was introduced to simplify the presentation. This result can be easily extended
to compute higher order moments, by successive di�erentiation of the partition function (Volpe, 2001).

1

Z

@
l+r+s

Z

@�li@�
r
j@�

s
k

= (�1)(l+r+s)m(li+rj+sk) (6)

Equation (6) represents the moment theorem associated with the partition function Z, and eq. (5) can be seen
as a particular case of the theorem.

If an expression for Z(�) is known explicitly, then one can use the moment theorem to compute any moments
of the corresponding pdf. However, eq. (6) implies and even more important result: it can be used to show
that partial derivatives of Z(�) satisfy an in�nite set of equivalence relations (Volpe, 2001), which are given by.

@
l+r+s

Z

@�li@�
r
j@�

s
k

= (�1)(l+r+s�p�q) @
p+q

Z

@�
p
m@�

q
n

(7)

provided that: li + rj + sk = pm + qn and 1 � i; j; k;m; n � N . That is, any partial derivatives of Z that
correspond to a given moment mk are related to each other by (7).

3.2. The Jacobian Matrix

Equation (5) establishes a relationship between constrained moments and the parameters � through the par-
tition function Z, and this is its most important property. On the �ip side, it also shows how the normalization
integral changes by changing pdf parameters �. By the same logic, one can evaluate how moments change by
changing pdf parameters. On taking the integral of a generic moment hxpi, where (p = 1; 2:::), di�erentiating
it with respect to �k (1 � k � N) and making use of eq. (5), one gets:

@mp

@�k
= mpmk �m(p+k) (8)

which holds for 1 � k � N , and p = 1; 2; :::. If the constrained moments are known as explicit functions of
pdf parameters mk(�), then one can use (8) to express higher order moments in terms of the same parameters
m(k+p)(�). Unfortunately, the mk(�) are not available in most cases and, thus, eq.(8) cannot be used for that
purpose.

3



Proceedings of the ENCIT 2002, Caxambu - MG, Brazil - Paper CIT02-0021

On the other hand, one can use eq. (8) to evaluate changes in constrained moments that are caused by small
perturbations in the �. To that end, one can de�ne the Jacobian matrix (Volpe, 2001)

@(m)

@(�)
� @(m1;m2; :::;mN )

@(�1; �2; :::; �N )
=

0
BBB@

@m1

@�1

@m1

@�2
� � � @m1

@�N
@m2

@�1

@m2

@�2
� � � @m2

@�N
...

...
. . .

...
@mN
@�1

@mN
@�2

� � � @mN
@�N

1
CCCA (9)

The mem assumes that constrained moments are independent of each other (Papoulis, 1991). Then, one should
expect mk(�) to be functionally independent, and the matrix (9) should be invertible. If this is the case, then
one can write

@mi

@mj

=
@mi

@�p

@�p

@mj

= Æij (10)

for 1 � i; j; p � N . On the �ip side, higher order moments should depend on the constrained moments. After
all, this is the primary reason why one can derive closure relations (Bagano�, 1996). Hence, on computing the
derivatives of unconstrained moments, represented by hx(N+p)i = m(N+p), one has

@m(N+p)

@mj

=
@m(N+p)

@�k

@�k

@mj

=

NX
k=0

�
m(N+p)mk �m(N+p+k)

� @�k
@mj

(11)

where 1 � j; k � N .
On using the Jacobian matrix (9), one can write the total di�erential of the constrained moments with

respect to pdf parameters �

dmk =
@mk

@�p
d�p (12)

where the summation rule applies. This relation, in turn, can be approximated in the sense of small disturbances,
by

Æmk � @mk

@�p
Æ�p (13)

and, on assuming that the Jacobian is invertible, one gets

Æ�p � @�p

@mk

Æmk (14)

Equation (14) is the core of the small disturbance method. Along with the di�erentiation formulas (8) and
(11), it allows one to obtain approximate solutions to the moment problem in the neighborhood of a known
maximum entropy pdf, as will be shown next.

As a side note, the Jacobian matrix is real and symmetric. Therefore, it has a complete eigensystem and can
be diagonalized by a similarity transformation. Although we have not fully explored this possibility, it strongly
suggests that some very interesting results may follow from it.

4. Small Disturbance Expansions

The primary goal of this work is to investigate the possibility of using maximum entropy pdfs to represent
the near-equilibrium region. Since the equilibrium condition is associated with the pure Gaussian pdf, it is
convenient to present the method by developing a small disturbance expansion about a 1-D pure Gaussian:

fG0
(x) = A exp

���2Gx2� (15)

Some important non-equilibrium e�ects are associated with the asymmetry of the underlying pdf. In the
1-D case, some asymmetry can be introduced by specifying a non-zero third order moment, while keeping the
zero mean condition. As discussed above, realizability then requires a fourth order moment to be speci�ed as
well. Hence, the perturbed pdf shall exhibit the form

f(x) = A exp
�� ��1x+ �2x

2 + �3x
3 + �4x

4
��

(16)
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which is termed full quartic pdf. This expansion involves computing a Jacobian matrix (9) at the point where
that pdf reduces to the pure Gaussian, that is, where �1; �3 and �4 all go to zero.

@(m)

@(�)

����
G0

=
@(m1;m2;m3;m4)

@(�1; �2; �3; �4)

����
�1;�3;�4=0

(17)

In principle, one could evaluate all derivatives in (17) by di�erentiating the full quartic partition function
with respect to its parameters. However, Z(�1; �2; �3; �4) is not known. The Gaussian partition function cannot
be used to that end either, since it corresponds to a particular case ZG = Z(�1; �2; 0; 0), which is independent
of �3 and �4 (Volpe, 2001).

That is where the di�erentiation formula (8) comes in handy. It expresses the derivatives in terms of
moments, alone. On using it to compute (17), it yields

@(m)

@(�)

����
G0

=

0
BB@

m
2
1 m1m2 m1m3 m1m4

m2m1 m
2
2 m2m3 m2m4

m3m1 m3m2 m
2
3 m3m4

m4m1 m4m2 m4m3 m
2
4

1
CCA
G0

�

0
BB@

m2 m3 m4 m5

m3 m4 m5 m6

m4 m5 m6 m7

m5 m6 m7 m8

1
CCA
G0

(18)

This expression actually enables one to compute the Jacobian matrix at the point where the full quartic pdf
reduces to a Gaussian. For, at that point, the moments of both pdfs are precisely the same, and one knows how
to compute any Gaussian moment analytically, from its partition function ZG.

To be more speci�c, we are interested in perturbing the pure Gaussian. All odd-order moments of this pdf
are identically zero. Thus, on computing the even order moments from eq. (4), at �1 = 0, and substituting
them into (18), one obtains an invertible matrix (Volpe, 2001). Then, on computing its inverse, it results

@(�)

@(m)

����
G0

=

0
BBB@

�5�2G 0 2�22G 0
0 �8�22G 0 2�32G

2�22G 0
�4�3

2G

3
0

0 2�32G 0
�2�4

2G

3

1
CCCA (19)

This matrix, in turn, can be introduced in (14) to obtain a small disturbance expansion about pure Gaussian.
Hence, one would expect that the � of the perturbed pdf be given by

� =

0
BB@

0
�2G

0
0

1
CCA+

0
BB@

Æ�1

Æ�2

Æ�3

Æ�4

1
CCA (20)

and the values of the constrained moments are assumed to be close to those of the pure Gaussian. That is, the
perturbations are assumed small jÆmj � 1

m =

0
BB@

0
m2G

0
m4G

1
CCA+

0
BB@

0
Æm2

Æm3

Æm4

1
CCA (21)

where Æm1 = 0, so that the perturbed pdf will also have zero mean.
On combining equations (19) - (21), one gets
8>><
>>:

�1 � 2�22GÆm3

�2 � �2G � 8�22GÆm2 + 2�32GÆm4

�3 � � 4
3
�
3
2GÆm3

�4 � 2�32GÆm2 � 2
3
�
4
2GÆm4

(22)

These results represent an approximate solution to the moment problem in the near-equilibrium region. More-
over, the same reasoning can clearly be applied to other pdfs in the class de�ned by (2). Therefore, it actually
constitutes a method for obtaining approximate solutions to the moment problem in that region.

Given the strong nonlinearity of these pdfs, even crude �rst order estimates like (22) can be extremely
valuable. However, what is most important about them is that they provide a means to assess the physical
meaning of those pdf parameters. To that end, it is useful to cast them in a cleaner dimensionless form. On
taking �2G as a scale factor and de�ning the following dimensionless quantities

x = x
p
�2G �k = �k�

�k=2

2G ~mp = mp�
p=2

2G
(23)

5



Proceedings of the ENCIT 2002, Caxambu - MG, Brazil - Paper CIT02-0021

On substituting these de�nitions into (16) and (22), one can write them as

f(~x) = ~A exp
�� ��1~x+ �2~x

2 + �3~x
3 + �4~x

4
��

8>><
>>:

�1 � 2Æ ~m3

�2 � 1� 8Æ ~m2 + 2Æ ~m4

�3 � � 4
3
Æ ~m3

�4 � 2Æ ~m2 � 2
3
Æ ~m4

(24)

where ~A = A=
p
�2G and the dimensionless perturbed moments are given by

~m =

0
BB@

0
1
2

0
3
4

1
CCA+

0
BB@

0
Æ ~m2

Æ ~m3

Æ ~m4

1
CCA (25)

The �rst thing to be noticed in (24) is that even parameters �2 and �4 depend only on even moments and,
conversely, odd parameters �1 and �3 depend only on odd moments. To some extent, the split between even
and odd moments should be expected in a linear approximation. When �1 = �3 = 0 the pdf is even and all odd
moments are zero. Hence, on changing only ~m2 and ~m4 and keeping ~m1 = ~m3 = 0 one should expect that �1
and �3 remain 0, otherwise the resulting pdf would loose its symmetry and the odd moments would no longer
be zero.

On the other hand, (24) also show limitations of a �rst order approximation. In principle, one should be able
to perturb only ~m3 and keep the other constrained moments equal to their corresponding Gaussian counterparts:
~m = f0; 1=2; Æ ~m3; 3=4g. However, on substituting Æ ~m2 = Æ ~m4 = 0 and Æ ~m3 6= 0 into (24), one gets �3 6= 0, but
�4 = 0, which breaks down the realizability of the pdf. Another instance when realizability is a�ected is when
~m2 and ~m4 are perturbed in such a way that Æ ~m2 < Æ ~m4=3, since this leads to �4 < 0.

4.1. Higher Order Expansions

A means of improving matters on these limitations would be to extend the expansion to second order

�p = �p

����
G0

+
@�p

@mk

����
G0

Æmk +
1

2

@
2
�p

@mk@mj

����
G0

ÆmkÆmj +O(jÆmj3) (26)

This requires that one evaluates the third order tensor @2�p=@mk@mj for the Gaussian. In order to do so, one
must invert the Jacobian matrix in its generic form (18). This can be easily accomplished by using a software
package for symbolic manipulation. The �nal form of this matrix is quite complicated, algebraically, and will
not be reproduced here. It su�ces to note that it is a collection of nonlinear functions of moments up to order
2N : @�p=@mk = fpk (m1; :::;mN ;mN+1; :::;m2N ). Therefore, it can be di�erentiated analytically, by simply
using the di�erentiation formulas (10) and (11)

Similarly, these operations can be performed by using symbolic manipulation software. When these ex-
pressions are computed for the Gaussian, accounting for the nullity of odd order moments and substituting
appropriate expressions for even moments (�1G = 0), the results are strikingly simple. Then, on substituting
these results in (26), computing the second order approximation and introducing the de�nitions (23) one gets

8>><
>>:

�1 �
�
2 + 20Æ ~m2 � 28

3
Æ ~m4

�
Æ ~m3

�2 � 1� 8Æ ~m2 + 2Æ ~m4 � 50Æ ~m2
2 � 8Æ ~m2

3 + 44Æ ~m2Æ ~m4 � 28
3
Æ ~m2

4

�3 �
�� 4

3
� 16Æ ~m2 + 8Æ ~m4

�
Æ ~m3

�4 � 2Æ ~m2 � 2
3
Æ ~m4 + 22Æ ~m2

2 + 4Æ ~m2
3 � 56

3
Æ ~m2Æ ~m4 + 4Æ ~m2

4

(27)

The �rst thing one notices on comparing (27) to (24) is that these results exhibit full interdependence
between moments and parameters. This interdependence reveals features of the pdf that cannot be captured by
linear expressions. For instance, the dependence of �1 and �3 on Æ ~m2 and Æ ~m4 is such that these parameters will
change in response to perturbations in the even moments if, and only if, Æ ~m3 6= 0, thus keeping the symmetry
of the pdf whenever Æ ~m3 = 0. Moreover, �2 and �4 depend on Æ ~m2

3, so that their change in response to the
introduction of �skewness� is independent of the sign of Æ ~m3. It is also worth noting that even on perturbing
only ~m2 from its Gaussian value leads to �4 6= 0, that is, a quartic pdf. On the �ip side, the absence of Æ ~m2

3 in
the expressions for �1 and �3 seems to indicate that these parameters depend strongly on the sign of Æ ~m3.

These trends are amply veri�ed by numerical computations (Volpe, 2001). Therefore, the second order
expansion indeed improves our understanding of these parameters. However, (27) is still a truncated series and,
hence, realizability problems cannot be completely ruled out.

In principle, one could compute still higher order terms of the series expansion (26), and this could be
done by the same procedure used above. However, the number of terms grows geometrically with the order of
di�erentiation, and the computations become too cumbersome to tackle.
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On the other hand, with so few terms available in (27) there is no means of �nding out whether the series is
convergent. Hence, one must ask the question as to whether these expressions can provide reasonable estimates
of the parameters in the neighborhood of the Gaussian. That can only be ascertained by comparing their
predictions to known results.

5. Approximate versus Exact Results

The following procedure is proposed to test small disturbance estimates: 1) A range is de�ned for the
parameters (�1; �2; �3; �4) in the neighborhood of the Gaussian point (0; 1; 0; 0). 2) The pdfs that correspond to
values of �k in this range have the moments ( ~m1; ~m2; ~m3; ~m4) computed, and their departure from Gaussianity
(Æ ~m) is evaluated by means of eq. (25). 3) On introducing (Æ ~m) into eqs. (24) and (27), one gets small
disturbance estimates of the parameters (�1; �2; �3; �4). 4) These estimates can, in turn, be compared to the
original values that were assigned to the parameters.

Since the moments and parameters considered here make up an eight-dimensional space, one must test
perturbations separately. The �rst test that was carried out focused on the even order moments ~m2 and ~m4,
only. The parameters �1 and �3 were kept constant at �1 = �3 = 0, which corresponds to constant values
for the odd order moments ~m1 = ~m3 = 0. Hence, the perturbed pdf should be symmetric and have the form
f(~x) = A exp

�� ��2~x2 + �4~x
4
��
. This is the symmetric quartic pdf and it is actually one of the few pdfs in

this class for which the partition function is known in closed form (Volpe, 2001). Hence, one can compute its
moments exactly, by means of the moment theorem (5).

The results of this test are shown in Figure (1). The parameters �2 and �4 cover the ranges 0:9 � �2 � 1:1
and 0 � �4 � 0:5, respectively. First order estimates are plotted in (1.a) and (1.b). Whereas, second order
estimates are plotted in (1.c) and (1.d). In all plots, the mesh represents analytical results, the dots represent
small disturbance predictions and the Gaussian point is marked by a circle.
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Figure 1: Test of small disturbance approximations: (a) 1st order �2( ~m2; ~m4). (b) 1st order �4( ~m2; ~m4). (c) 2nd
order �2( ~m2; ~m4). (d) 2nd order �4( ~m2; ~m4). Mesh, exact solution; dash-dot lines, small disturbance; circle,
Gaussian.

The small disturbance predictions seem to agree reasonably well with the actual values of the parameters �2
and �4 over a small region in the neighborhood of the Gaussian point. Although the second order approximation
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does not seem to be markedly superior.

5.1. Test of Small Disturbance Estimates for ~m3 6= 0

Di�erently from the symmetric quartic, a full quartic pdf does not necessarily have zero mean. However, the
small disturbance estimates satisfy this condition and, thus, it must be enforced on the pdf for the comparison.
This is accomplished by shifting the pdf to the position where ~m1 = 0.

In addition to that, the second order estimates (27) exhibit full interdependence between moments and
parameters. This implies that ~m2, ~m3 and ~m4 must all be perturbed, while keeping ~m1 = 0. As for the
moments, one could either compute them numerically or by using the full quartic partition function, which
was derived in (Volpe, 2001). Unfortunately, that partition function is given by a series with relatively slow
convergence rate. Therefore, the numerical quadrature is preferred.

On accounting for these changes, the test procedure used in this case becomes: 1) The parameters are
assigned intervals about the Gaussian point (�0:3 � �1 � 0:3, �2 = 1, �0:3 � �3 � 0:3, 0 � �4 � 0:3). 2) The
corresponding pdfs have their mean evaluated numerically. 3) Then, they are shifted to zero mean and the �i of
the shifted pdfs are computed Volpe, 2001. 4) The moments ~m2, ~m3 and ~m4 of the shifted pdfs are computed
numerically, and their departure from Gaussianity is evaluated by (25). 5) On substituting (Æ ~m) into the small
disturbance formulas (24) and (27), one gets estimates for the �i. 6) These estimates should be compared to
the shifted values of those parameters, which were gotten in step 2.

Since all parameters and moments change in the test, there are many di�erent ways of presenting results.
On the other hand, perturbations of ~m2 and ~m4 have already been discussed above. Hence, it is useful to focus
on perturbations Æ ~m3, and consider their e�ects. Figure (2) shows a representative example of this test. Small
perturbations Æ ~m3 = ~m3, j ~m3j � 1, are introduced in a symmetric quartic pdf, which is in the neighborhood
of the pure Gaussian (�2 = 0:99; �4 = 1:6 � 10�2). Since the �rst order approximations of �2 and �4 are
independent of ~m3, only their second order estimates are plotted.
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Figure 2: Test of small disturbance estimates: (a) �1( ~m3), (b) �2( ~m3), (c) �3( ~m3), (d) �2( ~m3), Solid line, numeric
evaluation; dash-dot line 1st order s. d. for �1 and �3; dashed line, 2nd order s. d.; circle, symmetric quartic.

As can be seen, the small disturbance estimates for �1 and �3 predict the correct slope of the curves �1( ~m3)
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and �3( ~m3) at the symmetric quartic ( ~m3 = 0). It is worth noting that the linear estimate is indeed a good
approximation for those curves in the neighborhood of ~m3 = 0. A considerable departure from linearity can be
seen in the extremities of those curves. In part, it can be attributed to higher order terms, such as O(Æ ~m3

3).
However, in part it is a result of the perturbations Æ ~m2 and Æ ~m4 coupled with Æ ~m3, as can be seen in (27).
The second order estimate of �2( ~m3) shows a good �t over the whole range of ~m3. In contrast, the estimate of
�4( ~m3) shows considerably less accuracy over the same range.

An important result of this analysis is that for full quartic pdfs the zero mean condition ( ~m1 = 0) imposes
a relation between the parameters �3 and �1. This relation can be veri�ed by simply plotting one against
the other, as presented in Figure (3). This Figure also shows estimates of such relation that are gotten from
the �rst and second order small disturbance approximations. These results clearly indicate that a constant
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Figure 3: Functional relation �3(�1) for ~m1 = 0. Solid line, numeric evaluation; dash-dot line 1st order s. d.;
dashed line, 2nd order s. d.; circle, symmetric quartic.

ratio, �3=�1 = �2=3, is a good approximation for the relation between �3 and �1 that leads to ~m1 = 0, in the
neighborhood of the Gaussian.

6. Extension to Multidimensional PDFs

In order to extend the method to multidimensional pdfs f(x), one must �rst generalize the di�erentiation
formulas. To that end, it is useful to start from a more general de�nition of a maximum entropy pdf

�
f(x) =A exp[� (x)]
 (x) = �igi(x)

(28)

where A is the normalization parameter, the constrained moments are hgi(x)i, 1 � i � N , and the summation
convention applies. Clearly, the pdf de�ned in (1) is a particular case of this de�nition, for which hgi(x)i =
hxixjxki. Here again, on di�erentiating both sides of the normalization integral with respect to �k , 1 � k � N ,
one gets Volpe, 2001

@ ln(A)

@�k
= �@ ln(Z)

@�k
= hgk(x)i = hgki (29)

which is entirely similar to its 1-D counterpart (5). Then, on di�erentiating the integral of a given moment
hh(x)i with respect to �k (1 � k � N) and using (29), one gets

@hhi
@�k

= hhihgki � hhgki (30)

A particular case of (30) that is of special interest to us is when h(x) = gp(x), for 1 � p � N ,

@hgpi
@�k

= hgpihgki � hgpgki (31)

9
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which holds for 1 � k; p � N . Again, the result is similar to the 1-D (8), which is actually a particular case of
(31). On the basis of this result, one can de�ne a Jacobian matrix analogous with (9)

@(hgi)
@(�)

� @(hg1i; hg2i; :::; hgN i)
@(�1; �2; :::; �N )

=

0
BBBB@

@hg1i

@�1

@hg1i

@�2
� � � @hg1i

@�N
@hg2i

@�1

@hg2i

@�2
� � � @hg2i

@�N
...

...
. . .

...
@hgNi

@�1

@hgN i

@�2
� � � @hgN i

@�N

1
CCCCA (32)

and (31) implies that this is a symmetric matrix. If the determinant of (32) is nonzero, then the constrained
moments are functionally independent, and this allows one to write

@hgii
@hgji =

@hgii
@�p

@�p

@hgji = Æij (33)

for 1 � i; j; p � N . This result is analogous with (10). On the other hand, derivatives of unconstrained moments
hh(x)i with respect to constrained moments are given by Volpe, 2001

@hhi
@hgji =

NX
k=0

[hhihgki � hhgki] @�k
@hgji (34)

where 1 � j; k � N . Here again, the result is analogous with its 1-D version (11).
The Jacobian matrix (32) enables one to compute the total di�erential of the constrained moments with

respect to pdf parameters �k

dhgki = @hgki
@�p

d�p (35)

where the summation rule applies. On approximating this relation in the sense of small disturbances, jÆ�j � 1,
one gets

Æhgki � @hgki
@�p

Æ�p (36)

and, on assuming that the Jacobian matrix is invertible, this equation leads to

Æ�p � @�p

@hgkiÆhgki (37)

where it is assumed that jÆhgkij � 1. Equation (37) represents a small disturbance �rst order approximation
to the moment problem solution, provided that the Jacobian determinant is nonzero. That is, provided that
the constrained moments are independent functions of the pdf parameters. Furthermore, on making an analogy
with the 1-D case, one could use eqs. (33) and (34) to compute higher order estimates of that solution.

In what follows, a small disturbance �rst order approximation is developed for the Koopman pdf (Koopman,
1969). For simplicity, the example is limited to the case of two r.vs.

6.1. Koopman pdf

The pdf representation proposed by Koopman, 1969 constrains third order moments that represent non-
equilibrium e�ects hxix2i. Then, realizability requires that a fourth order moment be constrained as well
(Volpe, 2001). In its general form, it reads

fk(x) = A exp
�� ��ixi + �ijxixj| {z }

Gaussian

+ixixkxk +�(xpxp)
2
�	

(38)

Di�erently from (2), this pdf does not constrain all elements of the third order moment hxixjxki, but only a
particular contraction of it hxixkxki. Similarly, not all elements of hxixjxkxpi are constrained. Instead, it only
constrains h(xpxp)2i, which is enough to ensure realizability. This represents a rather important simpli�cation,
since it reduces signi�cantly the number of pdf parameters and constrained moments in the model. As a result,
the remaining third and fourth order moments, which were not constrained, should be given by closure relations
(Volpe, 2001). In particular, for two r.vs. this pdf is given by

fk(x; y) = A exp
�� ��xx+ �yy + �xxx

2 + �yyy
2 + xx(x

2 + y
2) + yy(x

2 + y
2) + �(x2 + y

2)2
�	

(39)
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and the constrained moments are

hgxi= hxi ; hgxxi= hx2i ; hgqxi= hx3i+ hxy2i � qx

hgyi = hyi ; hgyyi = hy2i ; hgqyi= hx2yi+ hy3i � qy

; hg4i = h(x2 + y
2)2i � M4 ;

(40)

It is worth noting that one can always write the pdf (39) in the main coordinate system of hxixji, where
this tensor is diagonal. Furthermore, we are interested in developing a small disturbance expansion about the
Maxwellian, which is a symmetric Gaussian with zero mean, fM (x; y) = AM exp

���2M �
x
2 + y

2
��
. This brings

further simpli�cations in the model: Symmetry implies that hxixji is a hydrostatic tensor, which reduces the
number parameters to only one, �2M . The zero mean condition, in turn, implies that all moments that involve
an odd power of either x or y are identically zero (Volpe, 2001), and this simpli�es computations enormously.

The small disturbance expansion in this case follows eq. (37). The Jacobian matrix is de�ned in (32)
and the moment di�erentiation formula is given by (31). The moments, in turn, can be evaluated by successive
di�erentiation of the 2-D Gaussian partition function. Hence, on following the same reasoning as in the 1-D case,
one can develop a �rst order small disturbance expansion about the Maxwellian, in the form of a Koopman pdf
fk(x; y). Such an expansion was developed by Volpe, 2001, and the results are presented below. For simplicity,
parameters and moments are put in dimensionless form, by using �2M as a scale.

~A=A�
�1=2
2M ; �x = �x�

�1=2
2M ; �xx = �xx�

�1
2M ; �x = x�

�3=2
2M ; � = ���22M

~x = x�
1=2

2M ; h~xi= hxi�1=22M ; h~x2i= hx2i�2M ; ~qx = qx�
3=2

2M ; ~M4 =M4�
2
2M

(41)

Similar de�nitions apply to moments of the variable y and corresponding parameters. On casting the results in
terms of these quantities, they read

fk(~x; ~y) = ~AK exp
�� ��x~x+ �y~y + �xx~x

2+

+�yy~y
2 + �x~x(~x

2 + ~y2) +

+ �y~y(~x
2 + ~y2) + �(~x2 + ~y2)2

�	

8>>>>>>>><
>>>>>>>>:

�x � 2Æ~qx
�y � 2Æ~qy
�xx � 1 + (Æ ~M4 � 6Æh~x2i � 4Æh~y2i)
�yy � 1 + (Æ ~M4 � 4Æh~x2i � 6Æh~y2i)
�x ��Æ~qx
�y ��Æ~qy
� � (Æh~x2i+ Æh~y2i) + Æ ~M4

4

(42)
where the �rst order moments are not perturbed, so as to keep the zero mean condition. An example of small
disturbance expansion about the Maxwellian, in the form of a Koopman pdf, is presented in Figure (4), where
the former is represented by dashed lines and the latter is represented by a mesh. The Maxwellian moments
are perturbed and the perturbations are substituted in (42) to estimate Koopman pdf parameters. Then the
moments of the resulting Koopman pdf are computed and compared to the values that were assigned to the
perturbed moments. Table 1 shows results of the comparison. As can be seen, the perturbed pdf exhibits

Table 1: Constrained Moments of a 2-D Koopman pdf

pdf h~xi h~yi h~x2i h~y2i ~qx ~qy ~M4

Maxwellian 0 0 0:5 0:5 0 0 2

s.d. input 0 0 0:51 0:52 0:02 0:03 2:05

Koopman �8:8� 10�5 1:5� 10�4 0:5110 0:5218 0:0184 0:0292 2:0702

some asymmetry, in the form of nonzero third order moments (qx; qy). As a result of such asymmetry and the
normalization condition, its peak is displaced downwards from the Maxwellian peak. On the �ip side, Table
(1) shows that the di�erences between input values and actual moments are not larger than the perturbations
introduced. In particular, it satis�es the zero mean condition within an error of order 10�4.

7. Conclusions

In e�ect, the method discussed above allows one to develop small disturbance expansions about the Gaussian,
in terms of a class of pdfs generated by the maximum entropy method. Although its solutions are approximate,
it does circumvent the mathematical di�culties that are associated with the moment problem for these pdfs.
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Figure 4: Example of a 2-D Koopman pdf gotten by s.d.t. expansion about a 2-D Maxwellian. Koopman, mesh;
Maxwellian, dashed lines.

It is certainly convenient that the Gaussian pdf belongs in this class, and that it can be used as the starting
point for small disturbance expansions. However, it must be noted that the same method can be applied to
virtually any pdf in this class, and this can be used to extend the range of small disturbance approximations in
certain applications (Volpe, 2001).

The test results presented above show that the small disturbance expansions are only accurate over small
intervals about the Gaussian, and that can be seen as a liability. On the other hand, they e�ectively enable one
to access the physical meaning of pdf parameters in that region. That is a crucial step if one is to use these
pdfs to explore the near-equilibrium region, as proposed by Koopman, 1969.

The examples above have shown that, in order to constrain third order moments, one must include a fourth
order moment to ensure realizability. This situation is bound to happen whenever the relevant moments do
not imply a realizable pdf by themselves. This is certainly a liability of the method, since one may be lead to
constrain moments that do not represent meaningful quantities. However, as the Koopman pdf shows, there is
a good deal of �exibility as to which higher order moments need be included to ensure realizability. That is
clearly an attractive feature of these pdfs.
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