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Abstract. The stability of the hydrodynamic �eld developed close to the axis of a rotating

disk electrode in an electrochemical cell is considered. This cell is used in the study of

anodic dissolution of iron electrodes in sulfuric acid media. Polarization curves (applied

voltage � current) obtained experimentally from such cells display a current instability re-

gion within the range of applied voltage in which the current is controlled by mass transport

of the electrolyte. According to the literature (Barcia et. al., 1992) the electrodissolution

process leads to the existence of a viscosity gradient in the interface metal-solution, which

changes the velocity pro�les and may a�ect the stability of the hydrodynamical �eld. The

purpose of this work is to investigate whether this viscosity gradient may lead to a hy-

drodynamic instability. The results show that the neutral stability curves are signi�cantly

modi�ed by the presence of a viscosity gradient and that the critical Reynolds number,

above which the considered class of perturbations are linearly unstable, is clearly reduced.

The existence of unstable hydrodynamic modes at Reynolds numbers on the order of those

found in the experimental setup may originate the observed current unstability.
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1 . INTRODUCTION

Polarization curves experimentally obtained in the electro-dissolution of iron in a 1 M

H2SO4 solution using a rotating disk as the working electrode present three di�erent

regions (Barcia et. al., 1992). In the �rst region, associated with low overvoltages applied

to the working electrode, the current is a function of the electric potential and dissolution

process only. The electric current is controlled by the transfer of charges at the interface

rotating disk/electrolyte solution, and the mass transport does not a�ect the electro-

dissolution process. By increasing the the applied potential, the curves show a second

region where the hydrodynamic conditions, which depend on the angular velocity imposed

to the rotating disk electrode, a�ect the rate of the anodic dissolution of iron. The current

is a function both of the applied potential and the hydrodynamic �eld developed close

to the rotating electrode. By further increasing the applied overvoltage, a third region

appears, where the current is totally controlled by mass-transport processes. In this

third region, polarization curves present a current plateau, de�ning a limit value for the

current, which depends on the hydrodynamic conditions set by the angular velocity of the

electrode.

Two current instabilities are observed in the third region, one at the beginning of

the current plateau and the second one at the end, where the electrode surface undergoes

an active to passive transition (Ferreira et. al., 1994). The �rst instability is intrinsic to

the system, while the current instability close to the active/passive transition is a�ected

by the output impedance of the control equipment. This instability can be supressed by

using a negative feedback resistance (Epelboin, 1972).

Most explanations presented in the literature for the current instabilities are based

on mechanisms occuring on a FeSO4 �lm precipitated on the electrode surface (Russel

and Newman, 1986). In fact, changes in the ohmic voltage drop due to precipitation

and dissolution of a FeSO4 �lm provide an acceptable explanation for the instability

observed in the active/passive transition region. However, this model can not be gener-

alized to explain oscillations observed at the begining of the current plateau. By using

electro-hydrodynamic (EHD) impedance measurements, Barcia et. al. (1992) studied the

electro-dissolution of iron electrodes in 1 M H2SO4 at the current plateau before and

after the �rst instability region. EHD impedance is a non-stationary method which intro-

duces a perturbation with variable frequency and low amplitude in the angular velocity

of the rotating disk electrode (Tribollet and Newman, 1983). Perturbation in the angular

velocity of the electrode induces a perturbation in the hydrodynamic and mass boundary

layers which a�ects the mass transport and, consequently, the current response at con-

stant applied overvoltage. Analysis of the EHD impedance results provides information

on the state of the electrode surface. In particular it gives information on whether the

surface is partially blocked (Caprani, 1987), uniformly accessible or covered by a porous

�lm (Deslouis, 1987). Barcia et. al. (1992) veri�ed that the electrode surface is uniformly

accessible before and after the �rst current instability, showing that the surface is not

covered by a �lm. In these conditions it is highly improbable that the electro-dissolution

kinetics leads to the deposition of a �lm in the begining of the �rst instability region

and that this �lm disappears at the end of that region in order to restore the steady-state

current at the same level observed before the onset of the instability. Moreover, Barcia et.

al. (1992) propose that the electro-dissolution process leads to the existence of a viscosity

gradient in the di�usion boundary layer. This viscosity gradient could a�ect the stability

of the hydrodynamic �eld and explain the observed current instability.



On the other hand, the existence of an hydrodynamic instability in the boundary layer

which develops close to a rotating disk has been the object of a number of investigations,

both experimental and theoretical in the case of uids with uniform viscosity. For a

comprehensive review of the literature on the subject the reader is referred to the paper

of Reed and Saric (1989). The main result concerning the stability of the steady state

velocity �eld is that the ow becomes unstable beyond a certain distance from the axis of

rotation. The ow develops corotating vortices which spiral outward with their axes along

logarithmic spirals of angle 90� + " (" � 13�) with respect to radius of the disk. The �rst

study of transition on a rotating disk, due to Smith (1946), found sinusoidal disturbances

in the boundary layer. Subsequently, Gregory, Stuart & Walker (1955) found stationary

vortices from a nondimensional radius R = 430 in a ow visualization using the wet-china-

clay technique. Here the nondimensional radius R, or Reynolds number, is de�ned by

R = r

 



�(1)

!1=2

(1)

where r is the radial distance from the axis, 
 and �(1) are the angular velocity and

the viscosity far from the disk surface. The experimental critical value of R found in

the literature, below which all small disturbances dampen, has been reported as being

anywhere between 182 and 530. As pointed out by Wilkinson & Malik (1985), \the

discrepancy between the values of critical Reynolds number obtained from hot-wire studies

and the earlier relatively high values obtained by visual techniques clearly results from

the insensitivity of visual techniques to very small disturbances".

Among the numerous analytical works, the work of Malik (1986) is of particular

relevance. This author determined the neutral stability curve (in the plane R � �) for

stationary vortex disturbances using a system of linear stability equations which include

the e�ects of streamline curvature and Coriolis force. Here � is the nondimensional

perturbation wavenumber, de�ned by

� =
2�

�d

 



�(1)

!1=2
(2)

where �d is the dimensional wavelength of the perturbation. The critical Reynolds number

was found to be in good agreement with experimental resuts, at a value of R = 285:36.

We emphasize that all these results refer to constant viscosity uids. If we consider

these results alone we cannot explain the observed instability in the electrochemical cell

since Reynolds numbers in these experiments are always less than 100, and no experimen-

tal study reports instability below R=182 for the case of constant viscosity.

To investigate the importance of the hydrodynamics in the electro-dissolution of

iron, Ferreira (1993) and Geraldo (1998) studied the inuence of the viscosity on the

current oscillations observed at the begining of the current plateau region measured in

electrochemical cells where the working electrode consists of a rotating disk. These authors

found that increasing the electrolyte viscosity { and therefore decreasing the Reynolds

number { by adding glycerol to the solution, forces the current oscillations to a periodic

behaviour or even suppresses the instability. The facts that no hydrodynamic instability

is observed in the range of Reynolds numbers of the experiments for the case of constant

viscosity, and that a viscosity gradient has been observed in the boundary layer in the

electrochemical cells, suggest that the viscosity gradient may play an important role in

the hydrodynamic stability of the ow and may therefore a�ect the electric current.



The purpose of this work is to investigate the inuence of a viscosity gradient along

the axial direction, on the stability of the boundary layer developed close to the rotating

disk electrode with respect to a class of axisymmetric perturbations.

A small perturbation is added to the steady-state hydrodynamic �eld and the evo-

lution of the perturbed �eld is investigated with the appropriate linearized form of the

the evolution equations. Space derivatives are discretized transforming the original for-

mulation in a generalized eigenvalue/eigenvector problem. The eigenvectors contain a

description of each perturbation mode in the points of the grid. The sign of the real

part of the associated eigenvalue de�nes the stability of the mode and the imaginary part

determines the natural frequency of the mode. The problem is solved numerically.

Section 2 presents the evolution equations governing the hydrodynamic �eld, the

form of the viscosity pro�le assumed and the steady-state solution of the problem for both

constant and variable viscosity uids. Section 3 presents the type of perturbation for which

the stability of the base state is studied, boundary conditions, the linearized evolution

equations of the perturbations, the resulting generalized eigenvalue/eigenfunction problem

and the solution procedure adopted for this problem. Section 4 discusses the parameters

used in the simulations, the results obtained, and the boundary conditions applicable to

the perturbations. Section 5 presents the conclusions of this work.

2 . THE STEADY-STATE HYDRODYNAMIC FIELD

In this section we describe the steady-state solution of the continuity and time-dependent
Navier-Stokes equations for in�nite rotating disk (Schlichting, 1968) and variable viscosity
uids, given by Eqs. (3-6).
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The steady-state hydrodynamic �eld for constant-viscosity uids close to the axis of

a rotating disk was �rst investigated by von K�arm�an (1921). As a necessary prelude to

the following sections we briey review von K�arm�an results (Schlichting, 1968).
Introducing in Eqs. (4-6) the dimensionless functions F , G, H and P , de�ned by:

�vr = r
F (�) (7)

�v� = r
G(�) (8)

�vz = (�(1)
)
1=2H(�) (9)

�p = ��(1)
P (�) (10)

where � = z(
=�(1))1=2 and 
 is the angular velocity of the disk, we obtain a set of

three coupled nonlinear ordinary di�erential equations for the dimensionless functions F ,

G and H and a fourth equation for P .
In the case of electrolytes with variable viscosity we consider that the transport

properties depend on � only. Consequently von K�arm�an's transformations (von Karm�an,



1921) given by Eqs. (7-10) can be used. The problem for variable density and viscosity
uids was studied by Pollard and Newman (1980). In the present case the density is
assumed to be constant. By introducing the dimensionless functions in Eqs. (4-6) we
obtain:
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Boundary conditions for F , G and H are F = H = P = 0, G = 1 when � = 0,

F = G = H
0 = 0 when � �! 1. Conditions F = 0 and G = 1 in � = 0 reect the

non-slip requirement at the electrode surface.
To integrate the above equations it is necessary to impose a viscosity pro�le. In this

work we use the following pro�le proposed by Barcia et. al. (1992):
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where �(0)=�(1) is the ratio of the viscosity at the elec-

trode surface and in the bulk of solution. Although the

calculation is, strictly speaking, applicable to an in�nite

disk only, we utilize the same results when working ex-

perimentaly with a �nite disk, provided that the disk

radius is large compared with the thickness of the layer

carried with the disk. Fig. 1 shows a rotating disk used

in electrochemistry. This electrode consists of a cylin-

drical rod (A=0.2 cm2). The rod specimen is embedded

in an epoxy resin mold such that only its cross section

is allowed to contact the electrolyte, in order to con-

stitute a rotating disk electrode. Figure 2 shows the

velocity pro�les for constant and variable viscosity with

�(0)=�(1) = 8 and q = 15. It also shows the viscosity

pro�le corresponding to the variable viscosity case.
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Figure 1: The rotating

disk electrode
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Figure 2: Dimensionless velocity pro�les F , G and H for constant and variable viscosity uids (on

left) as functions of the non-dimensional coordinate �. The viscosity pro�le is shown on right.



3 . PERTURBATIONS OF THE BASE STATE

We now address the problem of the stability of the base state with respect to small
perturbations in the form:

~vr = e�t+i�r
(�(1)
)

1=2 f(�) (16)
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)
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)

1=2 h(�) (18)

where � is the perturbation wavenumber along the radial direction and � is the sought
eigenvalue of the problem. We look for a solution of the hydrodynamic equations in the
form of base state plus perturbations. By eliminating the pressure and neglecting non-
linear terms we arrive at the following linearized evolution equations for the perturbations:�

1

r
+

@

@r

�
~vr +

@~vz

@z
= 0 (19)

@

@t

�
@~vr

@z
�

@~vz

@r

�
+

@�vr

@z

@~vr

@r
+

@~vr

@z

@�vr

@r
+ �vr

@2~vr

@r@z
+ ~vr

@2�vr

@r@z
�

2�v�
r

@~v�
@z

�

2~v�
r

@�v�
@z

+

@�vz
@z

@~vr
@z

+
@~vz

@z

@�vr
@z

+ �vz
@2~vr

@z2
+ ~vz

@2�vr
@z2

�

@�vr
@r

@~vz
@r
� �vr

@2~vz

@r2
�

@~vz
@r

@�vz
@z

� �vz
@2~vz

@r@z
=

d2�

dz2

�
@~vz

@r
+

@~vr

@z

�
+

d�

dz

 
�

~vr

r2
+

1

r

@~vr

@r
+

@2~vr

@r2
+ 2

@2~vr

@z2
�

@2~vz

@r@z

!
+

�

 
�

1

r2
@~vr
@z

+
1

r

@2~vr

@r@z
+

@3~vr

@z@r2
+

@3~vr

@z3
+

1

r2
@~vz
@r

�

1

r

@2~vz

@r2
�

@3~vz

@r3
�

@3~vz

@r@z2

!
(20)

@~v�
@t

+ �vr
@~v�
@r

+ ~vr
@�v�
@r

+
�vr~v� + ~vr�v�

r
+ �vz

@~v�
@z

+ ~vz
@�v�
@z

=

�

 
�

~v�
r2

+
1

r

@~v�
@r

+
@2~v�
@r2

+
@2~v�
@z2

!
+

d�

dz

@~v�
@z

(21)

For the remaining of this text we de�ne the non-dimensional viscosity as �� = �(�)=�(1)
and drop the asterisk from the new variable. By inserting the expressions of the base
state and of the perturbations in the linearized evolution equations and eliminating the
variable f with the continuity equation we arrive at a two-equation system, one containing
fourth-order space derivatives and the other one with second-order space derivatives. The
system reads: 
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where Dn = d
n
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n and the coe�cients in the above operators are given by:
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Eq. (22) de�nes a generalized eigenvalue/eigenfunction problem. The eigenfunctions

are the normal modes of the model, the real and the imaginary parts of each eigenvalue

being the rate of growth and frequency of the associated mode.

For a given viscosiy pro�le the parameter space of the problem contains two variables

only, the Reynolds number and the nondimensional wavenumber. The e�ect of the bulk

viscosity �(1) and angular velocity of the electrode 
 appear in the de�nition of the

Reynolds number. The viscosity pro�le itself contains two additional parameters, the

�(0)=�(1) ratio and q (see Eq. 15), which de�ne the slope of the pro�le close to the

electrode surface.

Boundary conditions of the problem require non-slip ow and vanishing axial com-

ponent of the velocity at the electrode surface. These conditions are already ful�lled by

the base-state, so the hydrodynamic �eld cannot be modi�ed by the perturbation at the

electrode surface. In consequence we must require g = h = 0 in � = 0. Morevoer, we

conclude from Eq. (19) that h0 = 0 at the electrode surface. In � �! 1 we require that

the perturbation vanishes (g = h = 0) and that h0 = 0.

The generalized eigenvalue/eigenfunction problem is solved numerically. Space deriva-

tives are represented by standard discrete formul� transforming the original problem in

an eigenvalue/eigenvector problem. The problem is solved using the LAPACK double

precision zgegv routine for generalized nonsymmetric eigenproblems.

4 . RESULTS

In order to identify unstable regions the parameter space was spanned in the range

10 � R � 600 and 0:05 � � � 0:9. The constant viscosity case and four variable

viscosity con�gurations were considered. In the cases of variable viscosity uids we anal-

ysed three con�gurations with the ratio between the viscosity at the electrode surface and

far from the electrode set to �(0)=�(1) = 6 and q taking the values q = 15, 2 and .05

(see Eq. 15). The fourth variable viscosity case was run with �(0)=�(1) = 12 and q = 2.

It is worth to mention that the parameter q de�nes the slope of the viscosity pro�le close

to the electrode surface and, consequently, the thickness of the viscosity boundary layer.

In all simulations the sys-

tem length was assumed as

�max = 20 and the eigen-

value/eigenvector problem

was solved in the nodes of

a grid containing 400 uni-

formly spaced points. The

results are presented in

the form of a neutral sta-

bility diagram, shown in

Fig. (3). The two hy-

drodynamic parameters of

the problem, namely the

Reynolds number and the

non-dimensional wavenum-

ber are represented in the x

and y axes of this diagram,

respectively.
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Figure 3: Neutral stability curves for constant viscosity uid

(curve 1), variable viscosity uids with �(0)=�(1) = 6 and q

taking the values q = 15, 2 and .05 (curves 2, 3, and 4). Curve

5 corresponds to a uid with �(0)=�(1) = 12 and q = 2.



The neutral stability curves de�nes the border between a stable and an unstable

region. At low Reynolds numbers, all wavelengths are linearly stable. Upon increasing

the Reynolds number a bifurcation point de�ned by the critical pair, (Rc; �c), is eventually

attained. Beyond the bifurcation point a range �min � � � �max, of unstable modes exists.

The form of the diagram shown in Fig. (3) is typical of stability analysis of boundary

layers velocity pro�les with an inexion point that are, therefore, inviscitly unstable.

The critical Reynolds number for the constant viscosity case (curve 1) is found to be

of the order of 215, corresponding to a critical wavenumber of the order of 0.32. These

�gures are within the range of critical parameters found in the literature for the stability

analysis of constant viscosity boundary layers which develop close to rotating disks. For

R = 500 the range of unstable wavenumbers is approximately 0:1 � � � 0:55.

The introduction of a variable viscosity uid drastically changes the stability proper-

ties of the boundary layer, in the sense of reducing the critical Reynolds number. Curve

2 was obtained by setting �(0)=�(1) = 6 and q = 15. The critical Reynolds number de-

creases to less than 50% of the value correponding to the constant viscosity case. In this

case the viscosity boundary layer (the thickness across which the viscosity varies) is es-

sentially con�ned to � < 4. For a comparison purpose we mention that the hydrodynamic

boundary layer is con�ned to � < 8.
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Figure 4: (a): <(h), (b): <(g), (c): =(h), (d): =(g); Real and Imaginary parts of �rst 20 more

unstable modes of perturbations with nondimensional wavelength � = :30, obtained in R = 90.

Fluid parameters are �(0)=�(1) = 15 and q = 15. (e): <(h), =(h) and (f): <(g), =(g) real and

Imaginary parts of the only unstable mode obtained with this parameter con�guration.

A decrease in the thickness of the viscosity boundary layer, obtained by setting q = 2

leads to a small reduction in the critical Reynolds number, as shown by curve 3. The



viscosity boundary layer is essentially con�ned to � < 1:3, in this case. Nevertheless, it

is not di�cult to understand that by keeping constant the ratio �(0)=�(1) and further

reducing the thickness of the viscosity boundary layer, the e�ect of this boundary layer

eventually vanishes and a constant viscosity hydrodynamic �eld is recovered. This means

that the unstabilization e�ect due to the variable viscosity of the uid attains a limit

and is eventually reversed if the thickness of the viscosity boundary layer is progressively

decreased. This e�ect is shown by curve 4, obtained with q = :05. In this case the

viscosity boundary layer is con�ned to � < :7

Finally, an increase in the ratio �(0)=�(1) leads to a decrease in the critical Reynolds

number, as shown by curve 5, Fig. (3).

Fig. (4) shows real and imaginary parts of the �rst 20 more unstable modes of

perturbations with nondimensional wavelength � = :30, obtained in R = 90. Fluid

parameters are �(0)=�(1) = 15 and q = 15. This point is located in the unstable region

of the diagram shown in Fig. (3), close to the bifurcation point of curve 2. Only one

mode, shown in Fig. (4e) and (4f), is in fact unstable in this case.

5 . CONCLUSIONS

In this work we studied how the stability of the hydrodynamic �eld developed close to

a rotating disk electrode is a�ected by the introduction of a viscosity gradient along the

rotating axis direction. We looked at the evolution of the velocity �eld in the form of base

state plus a small perturbation modulated along the radial direction. By introducing the

perturbed base state in the linearized evolution without the pressure we arrived at a gen-

eralized eigenvalue/eigenfunction problem. Space derivatives were discretely represented,

transforming the original problem in a generalized eigenvalue/eigenvector problem, which

was numerically solved using standard routines for nonsymmetric eigenproblems.

The results show that the stability is strongly a�ected by the gradient, and it can be

said that the hydrodynamic �eld becomes less stable. Reductions of the order of 50% or

even larger, on the critical Reynolds number, or the critical distance from the rotating

axis, may be expected. This lower critical Reynolds number is of the order of magnitude

of those attained in the experimental setup used by Ferreira (1993) and Geraldo (1998),

suporting the idea that the current unstabilities observed in the electrodissolution of iron

rotating electrodes may be induced by a hydrodynamical unstability.

The stability problem considered in this work contains four parameters: the nondi-

mensional radius or Reynolds number based on the angular velocity, the nondimensional

perturbation wavelength, the ratio �(0)=�(1) and q, which de�nes the slope of the vis-

cosity pro�le close to the electrode surface. The former two parameters depend on bulk

characteristics of the system and on the length scale of the perturbation. The latter

two are related to the electrodissolution kinetics and to the transport properties of the

chemical species generated at the interface. It is worth to note that the above mentioned

experimental data show that an increase in the uid bulk viscosity, or a reduction in the

electrode angular velocity stabilize the current oscillations. This result is captured by the

stability analysis presented in this work, since both changes in the operational parameters

lead to a decrease in the Reynolds number and to a more stable situation.

The results concerning constant viscosity uids are in good agreement with the the-

oretical and experimental data found in the literarure.
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