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Abstract. Flat plates are widely used in a large variety of equipment such as satellites, 
aircraft,  air cooled heat exchangers and etc. When thermocouples are used to measure the 
temperature of flat plate surfaces, which are exposed to fluids at different temperatures, 
errors occur because of the heat conduction along the wire. In this work the parameters 
which affect the error were analysed considering two-dimensional conduction through the 
plate and the thermocouple wires. This problem was numerically solved employing the finite 
element method with a triangular non-structured adaptive mesh with six nodes per element. 
The mesh refinement is automatically done and it is denser in regions, which have sharp 
curvature, tight geometries and high temperature gradient. Firstly the results from the 
previously mentioned analysis are compared with the analytical solution where is taken into 
account a one-dimensional conduction that is suitable for thin flat plates and long 
thermocouple wires. This comparison allows the validation of the numerical results and also 
to evaluate the parameters range in which the one-dimensional approach is suitable. The 
results obtained from this work enable us to quantify the error associated with conduction 
through the thermocouple wires in the flat plates temperature measurement evaluating the 
conditions that causes more significant errors. 
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1. INTRODUCTION 
 

When the thermocouple are used to measure the temperature of surfaces which are 
exposed to fluids at temperatures different from that, errors occur because of conduction of 
heat along the thermocouple wires. 

The necessity for measuring these surface temperature arises during thermal tests of 
aircraft heaters, investigation of heated leading-edge system for anti-icing and other types of 
thermal analysis. 

If the thermocouple is mounted on the plate in the hot-fluid side to measure the 
temperature of the plate, heat flows along the thermocouple wires and thence into the plate 
increasing the temperature of the plate at the junction so that the temperature recorded by the 
thermocouple would be higher than the true plate temperature. Conversely, if the 



thermocouple is placed on the cold-fluid side the temperature recorded by the thermocouple 
would be lower than the plate. 

Concerning this problem Boelter et al. (1948) presented an analytical solution for steady-
state temperature distribution caused by a thermal source (or sink) in a flat plate surrounded 
on either side by fluids of different temperature and also to evaluate the thermal error which 
occurs when thermocouples are used for measuring the plate temperature. Furthermore 
Boelter and Lockhart (1951) presented experimental results obtained in order to compare with 
the analytical solution. 

Following the same research line Schneider (1955) developed the analytical solution for 
temperature error estimation in a flat plate surrounded either side by the fluids at different 
temperatures. In this model all the thermal properties are assumed to be constant with a 
uniform plate temperature over the thickness and the thermocouple wires heat transfer is taken 
as one dimensional conduction in a single long cylinder of homogeneous material. 

In this work the error introduced by the thermocouple presence is numerically 
investigated considering the thermocouple as a single cylinder of homogeneous material and a 
perfect contact between the thermocouple and the body . The conduction error is evaluated  as 
a function of some important parameters such as plate thickness, thermal conductivity ratio 
(thermocouple and body), the thermocouple radius and the overall convective heat transfer 
coefficient over the thermocouple wire. 

It is essential to stress that in this work the thermocouple was chosen to be placed at the 
hot fluid side in three configurations: mounted on the surface, embedded half way along the 
plate thickness and all the way through the plate thickness, as shown by Figures 1, 2 and 3 
respectively. 

 

  

 
Figure 1 - Thermocouple mounted on the flat 

plate surface. 

 
Figure 2 - Thermocouple embedded half way 

along the flat plate. 
 

In these figures hfh and hfc are the convective heat transfer coefficient over the plate on 
the hot and cold side, respectively; Tfh and Tfc are the fluid temperature of the hot and cold 
fluid; Tbsh and Tbsc are the surface temperature of the flat plate on the hot and cold side 
respectively, ke,  is the equivalent thermal conductivity of the thermocouple; To is the 
temperature at the junction or the temperature recorded by the thermocouple; L is the 
thermocouple length; Rb is the flat plate radius; Eb is the flat plate thickness; he is the 
equivalent convective heat transfer coefficient  over  the thermocouple and kb is the flat plate 
thermal conductivity. 



As the thermocouple wires is taken as a single cylinder of homogenous material it is 
essential to model the replacement of the two wires by one cylinder. 
 

 
 

Figure 3 - Thermocouple embedded all the way along the flat plate. 
 
2. MATHEMATICAL MODEL 
 
2.1 Thermocouple equivalent wire 
 

In order to replace the two thermocouple wires by one single cylinder it assumed that 
both wires have the same radius, that is, rw1=rw2=rw . Then, from this assumption it is possible 
to obtain the equivalent thermocouple radius, re, summing up the frontal area of each wire 
(Aw1+Aw2) resulting on the frontal area, Ae, of the equivalent wire as it follows. 

 

 
 

Figure 4 - Equivalent thermocouple frontal area. 

 

From this assumption it becomes that 
 
 21 wwe AAA +=  (1) 

 

 2we rr =  (2) 
 
The next step is to obtain the equivalent thermal conductivity, ke, and the equivalent 

convective heat transfer coefficient, he. 
Before developing the model it is important to show the difference between the heat 

transfer coefficient over each thermocouple wire when it is a bare or insulated thermocouple. 



When the thermocouple is bare the convective heat transfer coefficient, hfb, is equal to the 
overall heat transfer coefficient, hf. 

If the thermocouple wire is insulated, as shown in Figure 5, the overall heat transfer 
coefficient, hf, takes the form as follows: 
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Where: δi and ki are the thickness and the thermal conductivity of the insulation, 

respectively; Rc is contact resistance and Ac is the area of contact between the insulation and 
the thermocouple wire, which product RcAc is assumed to be negligible in this work. 

 

 
 

Figure 5 - Insulated thermocouple. 
 
Now it is possible to develop the model for the equivalent thermocouple wires concerning 

the equivalent thermal conductivity, ke, and the equivalent heat transfer coefficient, he. 
Once the equivalent radius, re, is obtained from Equation (2), the equivalent convective 

heat transfer coefficient, he, is obtained from the heat loss by the equivalent wire, ��e, of 
length, ��, which is the sum of the heat loss by each individual wire, ��w1, and, ��w2, 
according to Figure 6 it follows that: 

 

 
 

Figure 6 - Equivalent heat loss. 
 
 21 wwe QQQ δδδ +=  (4) 
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where Tw represents the surface temperature of the thermocouple.  
From Equation (5) it is obtained the following relation 
 

 2fe hh =  (6) 

  
To determine the equivalent thermal conductivity, ke, it is necessary to get the long pin 

fin equation given by Osizik (1985) for the heat flow rate through the fin as: 
 

 PhkAQ oθ=  (7) 

  
Summing up the two wires heat losses (Qw1+Qw2) and equalizing to the equivalent heat 

loss, Qe, results: 
 

 222111 wwfowwfoeeeeo AkhPAkhPAkhP θθθ +=  (8) 

  
where: Pe, P1, P2 are the perimeters of the equivalent wire and of each thermocouple wire; 

θo=( oT -Tfh) and kw1 and kw2 are the thermal conductivity of each individual wire. 

 
Then the equivalent thermal conductivity becomes: 
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2.2 Energy equation 
 

The analytical solution considers the flat plate radius as infinite but, in this work, the flat 
plate is taken to have large finite radius and the heat transfer process assumed steady-state 
two-dimensional conduction with constant thermal properties and having no heat generation. 

Thus, the energy equation for a cylindrical coordinate system as presented by Osizik 
(1985) is: 
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where k is the thermal conductivity (k=ke in the equivalent thermocouple wire and k=kb 

in the flat plate) and T is the temperature in any region. 
 

2.3 Boundary conditions 
 
In order to solve the problem for the configuration when the thermocouple is placed on 

the hot-fluid side, the following boundary conditions are considered. 
 

For r=0 and 0<z<L+Eb                 0=
dn

dT
 (11) 
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For r=Rb and L<z<Eb+L        0=
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For z=0 and 0<r<re                0=
dn

dT
                                                                                               (16) 

 
Where n represents the outward normal unit vector to the domain boundaries. 
 

2.4 Temperature measurement error 
 
In this work the temperature read by the thermocouple or even the temperature of the 

junction is defined as as T0 and the temperature measurement error will be presented as a  
dimensionless temperature error φ. The determination of T0 and φ, considering that the 
thermocouple is mounted on the hot fluid side are given by the following equations: 
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where Tp is the temperature at the same position as T0 when the thermocouple is not 

present.  
In this work the effect of Eb/re, kb/ke and hfc/he groups on the dimensionless temperature 

measurement error are investigated keeping the remaining ones constant. 
 
3. NUMERICAL SOLUTION 

 
This problem was numerically solved employing a program based upon the Galerkin 

finite element method. This program uses a quadratic interpolation polynomial to convert 
continuous partial differential equations into discrete nodal equations. The program works  
with a triangular non structured adaptive mesh with six nodes per element. The mesh 
refinement is automatically processed and presented more intense refinement in regions which 
have large curvature that are geometrically small and that are subjected to high temperature 
gradient. The algebraic equations system has been solved through the iterative conjugate-



gradient method, using the incomplete Cholesky decomposition as a preconditioner, Macsyma 
Inc. (1996). 

 
4. ANALYTICAL MODEL 

 
Schneider (1955) developed the analytical solution for thermocouple conduction error 

determination considering a steady state temperature distribution in a uninsulated flat plate  
with a cylindrical heat source located in the plate as shown in Figure 7. 

 

 
 

Figure 7 - Flat plate with a cylindrical source. 

 

where the source qo has a cylindrical shape with volume be Er 2π  and at uniform 

temperature T0. 
In his analysis Schneider (1955) made some assumptions such as: there is no temperature 

gradient along the plate thickness, the contact between the body and thermocouple is perfect, 
thermocouple is considered as a very long single cylinder and the plate has infinite radius. 

The final equation for the plate measurement error due to the thermocouple presence is: 
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and: 

( )
bb

fcfh

Ek

hh +
=2ε

 
(20)

 
 
where: )(1 erK ε  and )(0 erK ε  are Bessel functions. 

 
The true plate temperature is obtained for a point very far from the source as: 
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5. RESULTS 
 

In this work the following numerical values are employed: hfb=1027.71W/mK,  
L=3.6x10-2 m, Rb=7.18x10-2m , Tfh=1174 K, Tfc=333.15 K, δI=1.27x10-4 m, ki=0.043 W/mK 

The following items presents the influence of Eb/re, kb/ke, hfc/he ratios on the 
dimensionless temperature error. 

 
5.1 Variation of the Eb/re 

 
Looking in to Figure 8 it is well observed that the value of φ reduces as the ratio Eb/re 

increases and that can be explained through two situations such as : for Eb/re <<1 φ is high 
due to the thermocouple radius is relatively big relating to Eb then the heat flux and 
consequently the isothermal lines are more disturbed at the junction and also the temperature 
of the wall opposite to the surface where the thermocouple is placed is highly affected. This 
influence can be observed in Figure 9 (a) which shows the isothermal lines disturbance along 
the plat thickness for this ratio. On the other hand if the ratio Eb/re >>1 φ reduce as shown in 
Fig.8 and that is due to the lower disturbance caused by the thermocouple affecting much less 
the heat flux at the junction. In Figure 9 (b) it is observed a lower disturbance on the opposite 
wall when the ratio is equal to 4. 

According to Figure 8, the numerically obtained φ values reduces as the thermocouple is 
inserted into the plate.  

The difference between the numerical and analytical results are due to: in the analytical 
model the there is no temperature gradient along the plate thickness and across the 
thermocouple wire so it is impossible to set a depth of insertion. 

 
5.2 Variation of kb/ke 
 

Figure 10 shows the reduction in the values of φ as the ratio kb/ke increases. The reason 
why this happen is the fact that when the heat flux coming from the thermocouple hits the 
plate which has low thermal resistance there is no great disturbance on the isothermal lines at 
the junction but, on the other hand, if the thermal resistance is high the plate prevent the heat 
flux from going through causing then a great temperature difference at the junction. 

The insertion of the thermocouple in the plate reduces the values of φ as can be seen in 
Figure 10. 

Concerning the difference between the analytical and numerical results the considerations 
are the same as discussed. 

 
5.3 Variation of hfc/ he 

 
Figure 11 shows the effect of the ratio hfc/he on temperature error. It is observed that the 

temperature measurement error drops when the ratio hfc/he increases. That happens because 
when he<<hfc the heat flux rate is small that causes slight temperature disturbance or when hfc 
is high the heat is transferred mainly to the fluid at the opposite side bringing low alteration in 
the plate temperature distribution. 

From Figure 11 it is also observed the great difference between the numerical and the 
analytical results turns out  due to the same reasons that have been discussed previously. 
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(a) Eb/re=0.8 

 
 

(b) Eb/re=4 

 
Figure 8 - Dimensionless temperature 

measurement error as a function of Eb/re 

(kp/ke=1.41and hfc/he=0.26). 

 
Figure 9 – Isothermal lines as a function of 

Eb/re. 
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Figure 10 - Analysis of the ratio kp/ke 
(Eb/re=3.5 and hfc/ he =0.26). 

 
Figure 11 - Influence of the ratio hfc/ he 

(Eb/re=3.5 and kp/ke=1.41). 
 
 
 



6. CONCLUSIONS 

 
The analysis of this problem with the two-dimensional approach allowed the evaluation 

of the parameters range in which the analytical solution (one-dimensional) is applied.  
The two-dimensional analysis provides some insights about this kind of error which can 

not be obtained through the one-dimensional analysis as for instance the error reduction due 
to the thermocouple insertion in the plate. 

In spite of the difficulty in building up a thermocouple junction inserted in the plate, this 
kind of assembly causes lower disturbance in the temperature field, resulting in small errors. 

However the error trend can be predicted by the one-dimensional analysis. Also it is 
possible to conclude that in elaborating an experiment the thermocouple employed should 
have characteristics which minimise the temperature field disturbance of the plate at the 
junction where the temperature is to be measured. 
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