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Abstract. Drying is a simultaneous heat and moisture transport problem. Heat and mass
transfer in solids may be described by the energy and mass equations, in conjunction with the
initial and boundary conditions. If solid properties, including the diffusion coefficient, are
invariant, its possible to treat both heat and mass transfer in a similar manner. This work
presents an investigation of the simultaneous heat and mass transfer during the drying of
solids with prolate spheroidal shape. A two-dimensional diffusional model applied to a
prolate spheroid is presented considering the liquid diffusion as the only mechanism of
moisture transport and allowing convective and evaporative boundary conditions at the
surface of the solid. The resulting equations are solved numerically using the finite-volume
method. To validate the numerical model, results of the mean moisture content and center
temperature obtained were compared with experimental data of wheat grain drying and good
agreement was obtained. The convective and diffusion coefficients were obtained by fitting the
model to experimental data, minimizing the sum of square residuals, in successive trials. The
diffusion phenomenon inside a prolate spheroid represents to a higher degree of precision the
problem under consideration in comparison to the current approach which uses spherical or
cylindrical geometry.
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1. INTRODUCTION

The removal of moisture from biological products during drying processes has been
asubject of study for a long time.

A great number of researchers working in drying process of individual particles has
proposed mathematical models of the process using heat and moisture differential equations,
and numerical solution technique to solve these equations simultaneously (Young, 1969;
Mikhailov & Shishedjiev, 1975; Fortes, 1978; Fortes & Okos, 1981; Fortes et al., 1981;
Kameoka et al., 1986; Sokhansanj, 1987; Parti, 1993; Oliveira et al., 1995; Fasina &
Sokhansanj, 1995; Irudayaraj & Wu, 1996; Jumah & Mujumdar, 1996; Cheroto et al., 1997)



Many biological products have shape approximately ellipsoidal, and in particular, prolate
spheroidal. For example one has rice, wheat, banana, orange, silkworm cocoon, and so on.
The problem of heat and mass transfer diffusion on a prolate spheroid is of great interest
because, it represents a high degree of precision of the problem in comparison to the current
approach which uses spherical or cylindrical geometry.

Heat and mass transfer in spheroidal bodies may be described by energy and mass
equations, in conjunction with initial and boundary conditions. If the solid properties,
including the diffusion coefficient are invariant, it is possible to treat both heat and mass
transfer in a similar manner. This is a relevant formulation and it is unnecessary to repeat the
complex derivation for each different body. Recently, theoretical studies of mass diffusion
through prolate spheroids has received much attention in the literature considering constant
and convective boundary conditions (Lima et al., 1997; Lima & Nebra, 1999a; Lima & Nebra,
1999b; Lima & Nebra, 2000).

The objective of this study is to predict numerically in the two dimensional case, the
simultaneous heat and mass transfer during drying of prolate spheroidal solids, using the
finite-volume method.

2. MATHEMATICAL MODELLING

For non-steady state, the diffusion equation in any coordinate system is given in short
form by:
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where Φ is the potential, ΦΓ is the transport property, ψ is a thermal property and t is the
time.

Consider a prolate spheroid of dimension L1 and L2 pictured in Fig. 1. To simplify the
problem under consideration, the following assumptions were made:

•  change of volume of the body is neglected;
•  thermophysical properties are variables
•  the body is axi-symmetrical around z-axis;
•  the moisture content and temperature field are considered symmetric around z-

axis all the time;
•  the phenomenon occurs under evaporative and convective boundary conditions

including heating of vapor produced at the surface.
•  no energy and mass generation occurs.

In many physical problems it is best to use an appropriate orthogonal coordinate system ξ,
η, ζ instead of the Cartesian coordinates x, y, z. In the case of a body with ellipsoidal
geometric shape, an adequate coordinate system is the prolate spheroidal coordinate system.
The relation between Cartesian and prolate spheroidal coordinate systems are given by,
Magnus et al.(1966):
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where ξ=coshµ, η=cosφ, ζ =cosω and L=(L2
2 - L1

2)1/2. In these equations, µ, φ, ω are prolate
spheroidal coordinates, η, ξ,ζ, angular (⊥ x), radial and angular (⊥ z) coordinates, and L1 and
L2 are the ellipse major and minor semi-axis (see Fig. 1).



Then, utilizing the metric coefficients, the variables ξ, η and ζ, the differentiation’s rules,
the symmetry around the z-axis, ∂/∂ω=0 ⇒  ∂/∂ζ=0 and using the assumptions presented, a
mathematical model was derived in the prolate spheroidal coordinate system, and is presented
below:
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Figure 1- Geometrical parameters of a prolate spheroidal solid

2.1 Mass transfer

To the mass transfer process Φ correspond to moisture content and is denoted by M,
DρΓ Φ = (density times diffusion coefficient) and ρψ = (density). Then Eq. (1) may be re-

written as follows:
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 with the following boundary conditions:

•  Free surface. The mass diffusive flux is equal to the mass convective flux at the
surface of the solid.
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 where hm is the mass transfer coefficient, Me is the equilibrium moisture content and subscript
f refers to the surface of the solid.

•  Planes of symmetry. The angular and radial gradients of moisture content are equal to
zero at the planes of symmetry.
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•  Constant initial conditions in the interior of the solid.

M(ξ; η; 0)=Mo (6)



The average moisture content M of the body is:
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and can be calculated as follows:
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In these equations, V is the total volume in the domain considered for the new coordinate
system, calculated according to Magnus et al. (1966).

2.2 Heat transfer

In the heat transfer process, Φ is the temperature θ, k=ΦΓ is the thermal conductivity
and pcρψ = (density times specific heat). In this manner, the transient heat conduction

equation is given by:
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where α=k/(ρcp) is the thermal diffusity.
The boundary conditions are:

•  Free surface. The heat convective flux supplied to the body surface equals to the
heat diffusive flux plus the energy necessary to evaporate the liquid water and to
heat the vapor produced at the surface of the prolate spheroid from surface
temperature to the air drying temperature,
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In this equation h*
fg is the evaporating heat of the product, S is surface area, hc is the

convective heat transfer coefficient, ρs is the dry solid density and θe is the equilibrium
temperature of the solid.

•  Planes of symmetry. The angular and radial gradients of temperature are equal to
zero at the planes of symmetry,
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•  Constant initial condition in the interior of the solid

θ(ξ; η; 0)= θo (12)



The average temperature θ of the body during diffusion phenomenon is calculated as
follows:

∫=
V
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V
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Various numerical methods have been used to solve the problem of transient diffusion,
such as, finite-difference, finite-element, boundary element and finite-volume methods. In
particular, in this work, the numerical method used was the finite-volume method. In the
simulation of diffusion phenomenon in prolate spheroids a certain smaller domain was
utilized, due to the symmetry of the body. A schema of the physical domain considered is
illustrated in Fig. 2, where the nodal points are presented. In this figure, Φ” refers to the flux
of Φ per unit of area.
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Figure 2- Geometrical configuration of the physical problem.

Considering the following dimensionless parameters,
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the Eqs. (3) – (13) may be re-written in the dimensionless form.
Assuming fully implicit formulation, all terms are estimated in t*+∆t*, by integrating Eqs.

(3) and (9) (on the dimensionless form) in the control volume presented in Fig. 2, that
correspond to the internal points of the domain, and also in the dimensionless time (t*). Eq. (3)
and (9) were discretized by a finite-volume method utilizing practice B (nodal points in the
center of control-volume) in a grid of uniform size (Patankar, 1980; Maliska, 1995).

The discretization equation is given by:
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With known values of potential from the immediately preceding solution of Eq. (15), the
set of equations was solved iteratively using Gauss-Seidel method. The calculation starts with
the given initial condition and stops when the following convergence criteria were satisfied at
each point of the computational domain:
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where k represents the k th iteration in each time step and nb represents neighbor points. In
addition, we can quote the positivity of all coefficients Anb. A numerical grid with 20x20
points was used. Others details about the numerical procedure may be found in Lima et al.
(1997), Lima & Nebra (1997), Lima & Nebra (1999a), Lima & Nebra (1999b), Lima (1999)
and Lima & Nebra (2000).

3. RESULTS AND DISCUSSIONS

A computational code utilizing the Microsoft Fortran Power Station and called
SPREROIDIFF was written to solve the set of equations generated during the numerical
formulation. As an application and to validate the numerical model, numerical results were
compared with experimental data of moisture content and temperature obtained during the
drying of wheat kernels given by Fortes et al. (1981). The initial dimensions and physical
properties of the wheat and air and the diffusion and mass transfer coefficients are given
below.

The dimensions and mean density of the moist wheat are given by Brooker et al. (1992).
The air drying conditions are: temperature Ta=87,8oC; relative humidity URa= 5,6 % and air
velocity va=1,71 m/s. The initial temperature of the product is θP= 26oC. The heat transfer
coefficient was obtained considering the grain as a sphere with the same volume of the
ellipsoid according with Fortes et al. (1981).

For diffusion coefficient it was used an equation proposed by Fioreze (1986) that
considered the grain like sphere. In order it is necessary to modify this equation to the present
work that consider the particles like ellipsoidal. For successive trials the diffusion and mass
transfer coefficients were obtained. The fit to be represented in the equation of diffusion
coefficient by the constant 0.0001508.

* Dimensions and physical properties of the grain and air drying conditions

L2= 0.0032760 m; L1= 0.0015748 m; Mo= 0.2110 (d. b.); Me= 0.0165 (d. b.)
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Figure 3 illustrates the comparison between the average moisture content obtained
numerically and the one given by Fortes et al. (1981). As may be observed there exists
satisfactory agreement between the results.



Figure 4 shows the comparison of the center temperature obtained numerically with the
given by Fortes et al. (1981). As may be observed there exists almost complete concordance
between the results.

The least square error and standard deviation for the average moisture were 0.003980
(d.b.) and 0.000829 (d.b.), respectively. For the center temperature of the grain were obtained
0.035800 and 0.006400, respectively.
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Figure 3 - Comparison between predicted and experimental values of the average moisture
content of wheat grain during the drying process
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Figure 4 - Comparison between predicted and experimental values of the center temperature
of wheat during the drying process, wre θ*=(θe-θ)/(θe-θo)



Due to the good agreement obtained, we can say that the model is satisfactory to predict
the simultaneous heat and mass diffusion phenomenon inside a prolate spheroidal solid with
particular reference to the drying process.

4. CONCLUSIONS

A general fully numerical method for the solution of diffusion equation has been
developed and applied to the simultaneous heat and mass diffusion phenomenon in prolate
spheroidal solids. The method uses a system of prolate spheroidal co-ordinates. With the
improved treatment of the diffusion equation, the method quickly achieves convergence in
each iteration in the non-steady numerical simulation. The effect of singularity in the
symmetry points of the spheroid has been minimized using a regular grid. Satisfactory
prediction of average moisture content and center temperature inside the solid was obtained.

This work shows that the methodology may applied for other bodies, change the aspect
ratio only. This is a facilities this methodology in comparison with that used for diffusion
problem in sphere and cylinder. In these cases, it is necessary different diffusion equations
applied to each geometry specified.
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