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Abstract. Symbolic computation, rule based and functional programming are applied
with the generalised integral transform method, GITT, to analytical and numerically solve

a Luikov non-linear problem, using automatic manipulation over analytical formulae. A

�ltering technique split up the general problem to accelerate the convergence and the
homogeneous problem is transformed in a initial value problem and solved by Mathematica

packages. A Table exhibits excellent numerical results for the dimensionless temperature
and moisture distributions that are compared with values obtained by the higher order
�nite di�erence method, HOFDM.
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1 Introduction

New advances in computer science as interactive and intelligent programming techniques

and hybrid analytical-numerical methods when combined with symbolic computation are

named hybrid computation and they open new possibilities to advanced codes with less
programming e�ort that permit to store some analytical formulae and to analyse physical

behaviour. The physical analysis of heat and mass transfer in capillary porous media con-
stitutes a very important problem in thermal sciences. The classical integral transform

technique, CITT (Cotta et al., 1991) was extended to treat a variety of heat and mass

di�usion and convective-di�usion problems as presented in �Ozisik and Murray (1974) and

Mikhailov (1975). Cotta (1986, 1992), Cotta et al. (1986) and Luikov (1966) extended

the formalisms of the CITT, generating a new approach named by GITT generalised in-

tegral transform technique . The GITT formalisms e�ciently solved a lot of more general

and a priori non-transformable linear and non-linear problems. Additionally formalisms



of computer science as symbolic declarative, functional programming and rule based pro-
gramming (Wolfram, 1998, Gray, 1998) are being used to create intelligent and automatic

manipulation of analytical advanced mathematical formalisms. In the present stage, it

is possible to present benchmark numerical results to compare with classical solutions

obtained by purely numerical methods such as �nite di�erences and �nite elements.

2 ANALISYS

Let us consider the non-linear Luikov drying problem version for the case 1D, with bound-

ary condition of �rst and second kind, with variable termophysical properties that is an-

alytically detailed in (Duarte, 1998). Without loss of generality and for application of

GITT formalisms, this dimensionless version is algebraically rearranged and expressed as:
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the initial condition take the form:

�1(X; 0) = �2(X; 0) = 0 ; 0 � X � 1 (3)

and the boundary conditions:

@�1(X; � )

@X

���
X=0

= 0; � > 0 (4)

@�2(X; � )

@X

���
X=0

= 0; � > 0 (5)

�1(1; � ) = 1 ; � > 0 (6)

�2(1; � ) = 1 ; � > 0 (7)

Thermophysics parameters having temperature or moisture dependency assume the
form

cq�1(X; � ) = cqz + c �1(X; � ) (8)



Kq�1(X; � ) = Kqz +K �1(X; � ) (9)

am�2(X; � ) = amz + a �2(X; � ) (10)

��2(X; � ) = �z + �v �2(X; � ) (11)

��2(X; � ) = �z + �v �2(X; � ) (12)

The variable with index z stores the initial values used to non-linearities. �1 and

�2 express the dimensionless temperature and moisture content distributions, the other

parameters are presented in the literature (Duarte, 1998). To accelerate the convergence

rate a powerful analytical �ltering technique is applied in this stage (Duarte, 1998, Duarte

& Ribeiro, 1997, Cotta and Mikhailov, 1997). So the focused problem is split up in two
components, a steady-state, ��s, and a homogeneous, ��h, that results:

��(X; � ) = ��s(X) + ��h(X; � ); � = 1; 2 (13)

The solution achieved for each steady-state equation is easily found:

�1s(X) = �2s(X) = 1 (14)

The code analytically rearranges the equations and generates the homogeneous prob-
lems:
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and
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with initial conditions:

�1h(X; 0) = ��1s(X); 0 � X � 1; (17)

�2h(X; 0) = ��2s(X); 0 � X � 1; (18)



and homogeneous boundary conditions:
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���
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and:

�1h(1; � ) = 0; � > 0 (21)

�2h(1; � ) = 0; � > 0 (22)

where
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(23)
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(24)

According to GITT formalisms (Duarte and Ribeiro, 1997) let us assume the auxiliary

associated problem of classical Sturm-Liouville type, necessary to solve the homogeneous
problem:

@	i(X)

@X
+ �

2

i
	i(X) = 0; 0 < X < 1 (25)

@	i(X)

@X

���
X=0

= 0 (26)

	i(X)
���
X=1

= 0 (27)

@�j(X)

@X
+ �

2

j
�j(X) = 0; 0 < X < 1 (28)

@�j(X)

@X

���
X=0

= 0 (29)

�j(1)
���
X=1

= 0 (30)

The next step is to construct the inverse-transform pairs as follows
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Inverse
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and from the normalisation integrals results:
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According the GITT formalisms the solution of the auxiliary problems are:

	i(X) = cos �iX (37)

�j(X) = cos �jX (38)

the correspondent eigenvalues are easily computed and expressed as:
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2
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2
)�; j = 1; 2; 3:::: (40)

In this stage functional programming and rule based programming are used to auto-
matically execute some extensive and tedious analytical manipulations. This methodology
is more e�cient for advanced modelling and permits to reduce months of job requested

in the stages of human handling the analytical calculus and algorithm implementation.

Without loss of generality, the next step is to reduce the PDE system to an ODE sys-

tem, eliminating the spatial dependency and minimising the computational e�ort (Duarte,
1998):
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The second governing equation is systematically generated in the code and has the
�nal aspect:
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The symbols \Int" were de�ned to express some analytical integrals originated from

combinations of equations (37-38).

The transform initial conditions are easily obtained using the initial conditions from
the homogeneous problem, see equations (17-18) and without lost of generality:

�1i(0) = �
sin�ip
Ni �i

(43)

�2j(0) = �
sin�jq
Nj �j

(44)

At this stage we choose a prescribed error tolerance for this initial value problem and

truncate the expansion series at a �nite and su�cient order, N .
In the following section Table (1) is presented illustrating the numerical results for

dimensionless temperature and moisture pro�les obtained by GITT and HOFDM.

3 Results and Discussion

The variant of the non-linear Luikov problem was implemented using a Pentium processor
with a 233 MHz of speed and 128Mb of RAM memory, under Windows 95 OS. The
code implementation was made using a symbolic programming language, the software
Mathematica R 3.01 (Wolfram, 1998), generating solutions with excellent precision and

permitting graphical visualisation. The thermophysical parameters were collected from
the literature (Duarte, 1998). The initial value transform problem was numerically solved
using the NDSolve Mathematica function. The results were compared with the solution

obtained by the high order �nite di�erence method, HOFDM, presented in Duarte (1998).

Table (1) presents the excellent results computed for dimensionless temperature and

moisture potentials, �1 and �2 using GITT, with increasing truncation order, from N = 3

to N = 5 and for the following dimensionless time values, � = 20; � = 40 and � = 70 for
temperature potential and � = 145; � = 245 and � = 440 for moisture potential. It was

possible to obtain only �ve terms on the eigenfunction series due to hardware limitations

(memory and CPU time). Although the results are not fully numerically converged, in the
physical aspects the temperature and mass distributions results agree with those obtained



by HOFDM. Comparing both numerical results, it can be observed two to three converged
digits.

It is observed an excellent agreement between GITT end HOFDM results, although

for a critical comparison more terms in the GITT solution are necessary. In the results

obtained for temperature and moisture distributions it is pointed out that according to

thermophysical properties assumed, the massical inertial e�ect is four orders of magnitude
higher than the thermal inertial e�ect and this behaviour requires more control on the
numerical convergence that is more critical for short times. Consequently the temperature

distribution develop faster than the mass distribution in the porous media, so it is expected

that more terms are needed in the expansions series to achieve best results.
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Table 1: Dimensionless temperature and moisture distribution for the variant of the

Luikov problem, variable thermophysical properties (Duarte, 1998) using GITT and

HOFDM

.

�1(X; � )

� = 0; 20

XnN 3 4 5 HOFDM

0,0 0,3058 0,3042 0,3044 0,3025

0,6 0,6144 0,6132 0,6133 0,6097

1,0 1,000 1,000 1,000 1,000

� = 0; 40

XnN 3 4 5 HOFDM

0,0 0,6342 0,6338 0,6335 0,6297

0,6 0,7901 0,7899 0,7901 0,7862

1,0 1,000 1,000 1,000 1,000

� = 0; 70

XnN 3 4 5 HOFDM

0,0 0,8574 0,8577 0,8573 0,8530
0,6 0,9149 0,9152 0,9155 0,9120

1,0 1,000 1,000 1,000 1,000

�2(X; � )

� = 145; 0

XnN 3 4 5 HOFDM

0,0 0,3729 0,3763 0,3744 0,3711
0,6 0,5737 0,5771 0,5784 0,5749
1,0 1,000 1,000 1,000 1,000

� = 245; 0

XnN 3 4 5 HOFDM

0,0 0,5725 0,5740 0,5732 0,5710
0,6 0,7182 0,7197 0,7202 0,7181
1,0 1,000 1,000 1,000 1,000

� = 440; 0

XnN 3 4 5 HOFDM

0,0 0,7817 0,7820 0,7817 0,7807

0,6 0,8622 0,8625 0,8626 0,8618
1,0 1,000 1,000 1,000 1,000


