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Abstract. The Generalized Integral Transform Technique (GITT) has used in Heat Transfer
and Fluid Mechanics problems for two or more dimensions and has many extensions. The
basic idea consist in choosing an appropriate integral transform pair through an
associated auxiliary problem, an Sturm-Liouville problem, to be applied in the original
partial differential equation governing the involved phenomenon, which results in a
denumerable system of coupled ordinary differential equations. The approximation is the
truncation of the infinite system in a sufficiently large order and solve it through standard
numerical procedures obtaining the so-called complete solution. Then we invoke the
inversion formula to construct the potential. In this work we attempt to give an appropriate
formulation employing the functional analysis tools. We outline the proof of the
convergence of the GITT approximations to the exact solution, defining the error of the
approximated potential with respect to the exact solution.
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1. INTRODUCTION.

The General Integral Transform Technique (GITT) has been largely applied in the
solution of multi-dimensional heat transfer and fluid mechanics problems. A vast literature
is available that it is impossible to mention all of them. On the hand the mathematical task
concerning the proof of convergence of this approach was briefly discussed by Cotta
(1994), but mathematically speaking, in an incomplete manner. In this work we focus our
attention to this direction..

In this section we give an illustration in order to introduce the method to solve a
problem which appears in Mikhailov and Ösizik (1984). The next section is devoted to
establish the GITT with some functional approach. Section 3 contains the mathematical
background for the convergence of the GITT approximations. Finally, some conclusions
are given, including some possible extensions.

       We illustrate the method with a simple problem. Consider a finite region V in R3. The
partial differential equation governing the behavior of the potential T(x,t), depending of  the
spatial variable x  and the time t > 0, is

 (1)

following  Mikhailov and Ösizik (1984), where  w(x), K(x) and d(x) are parameters which
depend of the spatial variable,  while ϕ (t) and γ (t) are functions of the time, P(x,t) is the
source function, with the initial condition

       (2)

and boundary conditions

      (3)

where  α(x)  and  β(x) are prescribed boundary coefficients.

Considering the homogeneous version of the equation (1)

  (4)

with the corresponding initial and boundary conditions
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After a separation of variables we may write

   (6)

where

Such a solution satisfies the differential equation (4) with the boundary conditions (5-2),
through the appropriate determination of the coefficients  ci’ s.  Therefore, at  t = 0

which is a representation of   f(x)  in terms of the eigenfunctions  ψj’s, and these are
orthogonal with respect to the weighting  function  w(x)  in the region V, i.e.

where the normalization integral, or simply the norm  Ni, is given by

Now, we multiply both sides by the weighting function times  ψ(µ j ,x) and then integrate in
the region V,  obtaining

because the orthogonality property. The coefficients  ci’s can be determined,
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and the homogeneous potential is

completing the formal solution. The norms Ni’s and the transformed of the function f(x) can
be readily evaluated and Th(x,t) computed. This result can be interpreted as an expansion of
the potential Th(x,t) in terms of the known eigenfunctions  ψ (µi,x), in the form

where the expansion functions  Ai’s, for the present situation, were determined as

The transformed potential must satisfy the following ordinary differential equation

The solution for the non-homogeneous problem might be possible through the appropriate
integration of the original partial differential equation to yield an ordinary system for the
transformed potential, eliminating all the operators in the x variables, and then substituting
into an expansion such as for the homogeneous solution.

2. INTEGRAL TRANSFORM TECHNIQUE

We present the integral transform technique, whose central ideas are exactly the same
as above. In order to advance in the task of giving the functional approach of the GITT,
consider V a finite domain in R3, t belongs to the interval [0,tmax], K(x), w(x) and d(x) are
real functions belonging to C1(V), ϕ (t) and γ (t) are piecewise continuous functions of  t,
P(x,t) belongs to C(V×[0,tmax]), and T(x,t) is in C2(V×[0,tmax]). Finally f(x), α(x) and β(x)
are functions in PC(V), the set of piecewise continuous functions of x.

Recasting the equation (1) in operator fashion we have
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where

being the domain of  L  the set L2(V×[0,tmax]) and satisfying the initial and the boundary
conditions (2) and (3), respectively. Certainly, we can define the following set :

The norm is defined in the standard form :

Without loss of generality, we can consider K(x) = 1, and the C0-semigroup theory
guarantees that ∆ ≡  ∂2/∂x1

2 + ∂2/∂x2
2 + ∂2/∂x2

2 is a generator of a C0-semigroup of linear
operators, and the Cauchy problem (1) with the initial and boundary conditions (2)-(3) is
well-posed and has a strong solution, see Dautray-Lions (1984-1985), Goldstein (1985) or
Pazy (1982).

Now, we assume that the potential T(x,t) can be constructed as an eigenfunction
expansion such as

where the eigenfunctions are obtained from the solution of the auxiliary problem, namely a
generalized Sturm Liouville problem

To obtain a general expression for the expansion coefficients, Ai’s, we take moments with
respect to the weighting function w(x),

The left hand side of the equation above defines a transformed potential,
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while the complete potential  T(x,t)  can be obtained by the inversion formula

The last two equations form the integral transform pair (transform and inverse transform,
respectively), and its determination is a basic step in the integral transform technique. We
can adopt an integral transform pair with a symmetric kernel,

We integrate with respect to x in equation (1), and obtain an ordinary differential system for
the transformed potential. We operate on that equation with ∫V (ψ(µi,x)/Ni

1/2)dV, obtaining

where,

is a known function of  t.

The remaining terms are determined as follows, see Cotta (1994) :

for the expression of the left hand side of the equation (1).
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And also

where the eigenvalue problem was utilized for the substitution

The first volume integral is transformed into a surface integral, and after utilizing Green’s
formula, we obtain

a denumerable system of first order linear equations, where

In this formula, n  represents a normal to the boundary  S.

3. SURVEY OF THE CONVERGENCE OF THE GITT APPROXIMATIONS

The system of denumerable set of coupled equations must be truncated, as required
for computations, with truncation at the Nth row and column. Then, by increasing the order
of truncation, N, convergence is computationally checked for, providing the desired
numerical results at any prescribed accuracy.

For the finite set of coupled equations, derived of the truncation of the denumerable set of
coupled equations, i.e.

We obtain the weak solution  (in the case of  A(t)  with constant coefficients) :
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where T is the transformation matrix  T = { ϕ (1),..., ϕ (n)} with N linearly independent
eigenvectors  (ϕ (1),..., ϕ (n)), corresponding to the N distinct eigenvalues, and the new
dependent variable  y(t) = T v(t). The solution to the non-homogeneous problem with
constant coefficient matrix, A, can also be expressed in terms of the exponential matrix
function, Zwillinger (1997) :

which is equivalent to defining a fundamental matrix Ψ (t) = eAt. The problem is reduced to
evaluate the exponential matrix.

Now we define an inner product, denoted by  〈..,..〉  and defined by means of

In terms of the correspondent expansions of both functions  u(x,t)  and  v(x,t), we have

The norm associated to this inner product satisfies the following relation :

We define the error function of the approximated solution of the truncated expansion in
terms of eigenfunctions satisfying the associated Sturm-Liouville problem, i.e. TM(x,t),
with respect to the solution obtained by the GITT method, and such approximated solution
we call GITT approximation of order M, i.e.
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We can use the relation of the norm associated to the inner product defined above.

The problem of the convergence is reduced to prove that the last sum tends to zero, but for
the definition of the transformed potential, i.e.

the integrand  w(x) ψ(µi,x)T(x,t) is a continuous function, the integral is well-defined and
the square of the transformed integral too. Furthermore the transformed potential is
continuous because we assume that T(x,t) is in C2(V×[0,tmax]), and for such the transformed
potential is bounded

We can assume weaker conditions but this is a straightforward task. We obtain the
following result

in particular if the numeric sequence  ( max0<t<tmax {Ti(t)} )i=1,2...  is square summable. If we
consider other functional spaces, such as the space of functions with compact support it is
possible to obtain results for problems with domain not finite, but the analysis is a task for
the future.

4. CONCLUSIONS

The functional approach gives the appropriate mathematical background for the
convergence of the GITT approximations. When the functions involved are smooth. The
strong solution of the problem (1) is guaranteed by the C0-semigroup theory, and the GITT
approximations converges to this strong solution in a strong sense. With other assumptions,
for example if T(x,t) is only square integrable, we must obtain other results, and this is a
straightfoward task.

The rate of convergence depends on the particular nature of the problem, i.e. of the
particular conditions of the initial-boundary values problem. Indeed, as the transformed
potential is written in terms of the eigenfunctions, and the error function is expressed in
terms of these transformed potentials, the velocity of convergence depend of the solution of
the auxiliary problem.
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