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Abstract. Pultrusion is one of the most rapid and cost-effective processes for manufacturing 
composite materials with a constant cross-section. A fiber creel is impregnated in a resin bath 
and passes through a heated die with a constant pulling force. The elevated die temperature 
induces the curing resin process. The process is mathematically modeled by two equations: 
an elliptic energy equation and a transport equation for the degree of cure. These equations 
are coupled by a term-source resulting from resin curing exothermic reaction. A parabolic 
model, much simpler to be computationally implemented, can be used depending on the 
Péclét number of the problem. In this work the pultrusion process of thermosetting composite 
with circular cross-section is numerically simulated using an elliptic and a parabolic model. 
In both cases, the solution of the algebraic equations systems is obtained iteratively by a 
coupled way (no-segregated) combining the Conjugated Gradient and Newton-Raphson 
methods. The numeric data obtained for the temperature and degree of cure profiles through 
the two models were compared in order to verify the validity of the parabolic approach, that 
requests smaller computational effort. The temperature and the degree of cure distribution 
inside the pultruded material were also compared with results of the literature and showed a 
good agreement. It was analyzed the influence of the pulling speed and the fiber volume 
fraction on the results obtained by the elliptic and parabolic models. 
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1. INTRODUÇÃO 
 

Composite materials have a large industrial application (space and aeronautical 
structures, automotive components, tennis rackets). Pultrusion is one of the most rapid and 
cost-effective processes for manufacturing composite materials with a constant cross-section. 
In this process, a fiber creel is impregnated in a resin bath and passes through a heated die 
with a constant pulling force as represented in Fig. 1. The pulling speed, the fiber volume 
fraction, the die wall temperature profile, the type and quality of the fibers and resins, the 
composite thermal properties, are important parameters that affect the quality and 
performance of the manufactured material. Then, the improper control of these conditions 



may result in a failure of the pultrusion process committing the mechanical properties of the 
final product (Kim et al, 1997). 

Several authors have investigated the pultrusion process using mathematical models as 
well as experimental tests. The numerical study of Gorthala et al. (1994) presented a model 
solved by the finite difference technique to determine the temperature and degree of cure of 
the pultruded material.  

Chachad et al. (1996) simulated the pultrusion process in transient regime applying the 
finite volume method. The authors analyzed the pultruded composite material characteristics 
with irregular cross-section.  

Roux et al. (1998) presented numeric results and experimental measurements for the 
temperature profiles and degree of cure during the pultrusion process. The numerical solution 
was also obtained by the finite volume technique. 
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Figure 1. Schematic representation of the pultrusion process 
 
In the work of Suratno et al. (1998), it was performed a numeric simulation of carbon 

fibers reinforced with resin epoxy, using the finite element method. The authors showed the 
effect of the pulling speed in the temperature and degree of cure axial profiles inside the 
composite material. 

By comparing the results obtained using an elliptic and a parabolic model, the present 
study analyzes the pultrusion process of thermosetting composite with circular cross-section. 
The elliptic model equations were solved using the finite element technique with a Taylor-
Galerkin scheme. The parabolic approximation equations were discretized in the cross-section 
of the pultruded bar by the Galerkin finite element and the axial direction (pulling axis) was 
evaluated by a time-like marching technique. Both models algebraic equations systems are 
solved iteratively by a coupled way (no-segregated) combining the Conjugated Gradient and 
Newton-Raphson methods. The effect of the pulling speed and the fiber volume fraction on 
the results obtained by the elliptic and a parabolic model is also investigated. The knowledge 
of these characteristics allows a better pultrusion process design. 

 
2. MATHEMATICAL FORMULATION 
 

The mathematical formulation is based in the following assumptions: 
- the process is steady state and two-dimensional;  
- the material properties (density, specific heat, thermal conductivity) are constant at any 

resin-degree of cure;  
- the composite material is isotropic;  
- the effect of pressure on the heat of reaction is neglected.  



The present pultrusion process modeling is divided in two parts: the heat transfer problem 
and the resin-curing model. The heat transfer process that occurs within the pultruded 
composite is expressed as: 
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with the boundary conditions: 
at x = 0 (die entry) ⇒  T = Te  (1a) 

at r = R (bar/die interface) ⇒ T = Tw(x) (1b) 
where: 
r – radial coordinate; 
x – axial coordinate; 
u – pull speed; 
T – absolute temperature; 
q� – volumetric heat rate due to the resin-cure reaction; 

ρ – density. 
cp – specific heat 
k – thermal conductivity 

The bulk composite material density (ρb) is calculated by a mass fraction method given 
by: 
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where M is the mass fraction and the subscripts f, r and b correspond to fibers, resin and bulk 
composite material respectively. The thermal conductivity and the specific heat are 
determined in the same way: 
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where FV is fiber volume fraction. 

The degree of cure ( α ) is defined as the ratio between the energy liberated by the 
reaction until an instant of time (t) and the total energy liberated in whole cure reaction. The 
degree of cure variation with the time is calculated by: 
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where: 
A – pre-exponential constant; 
E – activation energy; 



R – universal gas constant; 
n – order of the reaction and 
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The volumetric heat rate due to the resin-cure reaction is related to the degree of cure by 

the expression:  
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where: 

∆H – total heat of reaction per unit mass of resin. 
The values of the constants in the Eqs. (5) and (6) are found from the data measured with 

differential scanning calorimeter (DSC). These parameters are provided by Suratno et al. 
(1998) and are listed in Table 1 for epoxy resin considered in this study. 

 
Table 1. Kinetic parameter of epoxy resin 

Parameter Symbol Value 
pre-exponential constant  A 1.914⋅105 (s-1) 
activation energy E 6.05⋅104 (J mol-1) 
total heat reaction ∆H 3.237⋅102 (J g-1) 
order of reaction n 1.69 

 
Table 2. Carbon fiber and epoxy resin properties values 

 

Properties Carbon fiber Epoxy resin 

ρ (kg/m3) 
k (w/m⋅K) 

Cp (J/kg⋅K) 

1790 
11.6 
712 

1260 
0.2 

1255 

 
At the present work the epoxy resin is reinforced with carbon fibers and the required 

numerical values of the transport properties are shown in Table 2. 
 

3. SOLUTION METHODOLOGY 
 
The pultrusion process shown in Fig. 1 was modeled by Eqs. (1) to (6) that were solved by 

two different methodologies. In the former, named elliptic approach, the finite element 
technique with a Taylor-Galerkin scheme was implemented as described below: 
 

3.1 Elliptic model: Taylor-Galerkin method 
 
A general formulation that is similar to the energy equation of the convective heat 

transfer problem for Eqs. (1) and (5) is described by: 
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with Γ = 





ρ bb
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k
 in Eq. (1) and Γ = 0 in Eq. (5).  

 
When the Galerkin finite element method is applied to solve Eq. (7) it yields a physically 

reasonable solution only when the local mesh Péclét number (Pe) is less than 2. The Pe 
number is calculated by: 

 

Γ
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where h = finite element characteristic length scale along the pulling axis. 

For large Pe number (problem dominated by convective transport) false oscillations 
appear in the solution process (Patankar,1980). To eliminate these spurious oscillations, Eq. 
(1) and Eq. (5) were solved using the Taylor-Galerkin finite element scheme (Donea, 1984 
and Comini et al., 1995). 

In this method the operator is split in two different contributions. At the first half of the 
pseudo-time integration interval only the convective terms are considered. The diffusive and 
source terms are carried on at the second half one. Thus, Eq. (7) is separated as: 
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For the first half of the time integration the time variation is calculated by a second-order 

Taylor series expansion: 
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where ∆t = half of the pseudo-time integration interval. 
 
The φ′′  value in Eq. (11) is obtained time deriving Eq. (9): 
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Combining Eq. (9), Eq. (11) and Eq. (12) results that: 
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For the second half of the time integration the time variation is determined by a first-

order Taylor series expansion, given by: 
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Introducing the first time derivative of the Eq. (10) in Eq. (14), follows: 

tG
xr

r
rr

/nn ∆












+












∂
φ∂+







∂
φ∂

∂
∂Γ≈φ−φ ++

2

2
211 1

 (15) 

 
For the pseudo-transient scheme used in this work, Eq. (13) is added to Eq. (15) obtaining 

the equation used in the Taylor-Galerkin method  
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The Taylor-Galerkin scheme inserts an artificial axial diffusion effect represented by the 

term below, which reduces the dependent variables axial gradients: 
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An unstructured mesh with triangular elements of six nodes and second-degree 

interpolation polynomials was applied to Eq. (16). The resultant algebraic equations system 
was solved by an iterative procedure in a coupled (no-segregated) way combining the 
Conjugated Gradient and Newton-Raphson methods. An adaptive scheme was used with 
successive mesh refinement in the more intense gradient regions. Fig. 2 presents an 
intermediate computational grid in the solution process for the elliptic formulation: 
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Figure 2. Computational grid in the intermediate process solution. 
 

3.2 Parabolic model: a time-like marching method  
 
In the parabolic model the Eq. (1) is simplified by neglecting the axial conduction term, as 

follow: 
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In this approximation Eq. (5) and Eq. (17) were discretized in the pultruded bar cross-

section by the Galerkin finite element and the axial direction (pulling axis) was evaluated by a 
time-like marching technique.  

The solution was obtained using a scheme equivalent to Crank-Nicolson time 
differencing. The cubic term in the Taylor series expansion of the solution in time is 
determined by a three-step approach. The time-step is controlled so this cubic term is less than 
an imposed error limit. 



Fig. 3 resents an intermediate computational grid in the solution process for the parabolic 
formulation. The computational domain is represented by a circular sector of the entire duct 
cross-section due to circular invariance.  

 

 
Figure 3. Computational grid in the intermediate process solution. 

 
4. RESULTS 

 
A comparison between the elliptic Taylor-Galerkin (T-G) and the parabolic results for the 

pultrusion process is presented in Fig. 4. The Taylor-Galerkin formulation was simulated for 
different ∆t values. For ∆t = 1.10-1 the axial diffusion influence is negligible for and the 
results approximate the parabolic method ones. The axial temperature and the degree of cure 
distributions show that the artificial axial diffusion effect in the Taylor-Galerkin method 
results increases for higher ∆t values. For ∆t = 1, there is a good agreement between the 
elliptic and parabolic results and the stability of the Taylor-Galerkin scheme is higher. So, all 
the following results were obtained with ∆t = 1 and the parameter listed previously in Tables 
1 and 2. 

 
 

0.0 0.1 0.2 0.3 0.4 0.5

Distância à entrada do molde [m ]

280

320

360

400

440

480

T
em

p
er

at
u

re
 [

K
]

Parabolics Results

T-G (    t=1e -1) Results

T-G  (   t=1) Results

 
 

 

0.0 0.1 0.2 0.3 0.4 0.5

Distance from  Heated Die Entry [ m  ]

0 .0

0.2

0.4

0.6

0.8

1.0

D
eg

re
e 

o
f 

C
u

re
 

T -G  (    t =1e1) R esults

T-G  (    t =1e -1) Results

Parabolic Results

T-G  (   t =1) Results∆

 
 

Figure 4a. Elliptic and parabolic results 
for the axial temperature profile 
(u = 0,1/60 m⋅s-1 and FV = 0,7) 

Figure 4b. Elliptic and parabolic results 
for the axial degree of cure profile 
(u = 0,1/60 m⋅s-1 and FV = 0,7) 

 
The numerical results using the Taylor-Galerkin scheme and the parabolic approximation 

were also compared with the data presented in Suratno et al. (1998). The axial temperature 
and the degree of cure profiles are showed in Fig. 5. The simulations were carried out with the 
same wall temperature distribution provided in Suratno’s work (dashed curve in Fig. 5a). 
Both temperature and degree of cure distributions obtained by the elliptic and parabolic 
schemes don’t differ significantly from the Suratno’s data.  



The temperature profile exhibits a maximum value close to the mid-die extension 
(Fig. 5a) due to the heat released by the resin cure exothermic reaction. It is noticed that in the 
region near the die entry the degree of cure shown in Fig. 5b present small variation, but the 
curve elevates rapidly as the resin cure reaction begin, reaching almost 90% in the die exit.  

This abrupt increase is associated with the temperature elevation in the composite 
material that also is influenced by the degree of the cure evolution, showing that these two 
phenomena are coupled. 
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Figure 5a. Results for the axial 
temperature profile 

(u = 0,1/60 m⋅s-1and FV = 0,7) 

Figure 5b. Results for the axial degree 
of cure profile  

(u = 0,1/60 m⋅s-1 and FV = 0,7) 
 
The influence of the pulling speed in the pultrusion process is presented in Fig. 6. The 

maximum value in the axial temperature distribution (Fig. 6a) occurs at smaller distance the 
die entry die when the pulling speed is small. Curves with higher values of the pulling speed 
exhibit a retarded and smoothed temperature peak. This displacement in the temperature 
maximum value is associated with a delay in the evolution of the degree of cure shown in Fig. 
6b. It is also verified that the Taylor-Galerkin and parabolic distributions present a good 
agreement (Figs. 6a and 6b) and both results show that higher pulling speed values require a 
greater die extension to complete the cure process. 

 
Table 3. Comparison between Taylor-Galerkin and parabolic schemes ( Degree of 

Cure =  0,98, u = 0,1/60 m⋅s-1and FV = 0,7 ) 
 

CPU Time (hours) 
Error 

T. Galerkin Parabolic 
1.10-3 
1.10-4 
1.10-5 

00:28:18 
00:41:50 
11:21:03 

00:00:05 
00:00:09 
00:00:22 

 
Table 3 presents the computational time processing for Taylor-Galerkin and parabolic 

schemes as a function of the imposed numeric solution accuracy (error). It is verified that the 



parabolic approximation requires much smaller computational time processing in comparison 
with the elliptic model.  
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Figure. 6a – Axial temperature profile 
along the die extension for different 
pulling speed values and FV = 0.7 

Figure. 6b – Axial degree of cure profile 
along the die extension for different  
pulling speed values and FV = 0.7 

 

Fig. 7 presents the effect of the fiber volume fraction in the temperature and degree of 
cure distributions during the manufacture process of epoxy resin reinforced with carbon 
fibers. The temperature curve (Fig. 7a) shows that for FV = 0.4 the resin cure reaction is more 
abrupt resulting in a high temperature elevation close to the die entry. As the fiber to resin 
ratio increases, this maximum temperature value decreases but the final temperature value is 
quite the same one for the three FV values simulated. The axial degree of cure as a function of 
the fiber volume fraction is presented in Fig. 7b. 
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Figure. 7a – Axial temperature profile 
along the die extension for different fiber 

volume fraction values and u = 0,5/60 m⋅s-1 

Figure. 7b – Axial degree of cure profile 
along the die extension for different fiber 

volume fraction values and u = 0,5/60 m⋅s-1 



At the die entry (when the cure reaction didn't still don’t started) the curve for FV = 0.8 
exhibits a degree of cure slightly greater. As soon as the exothermic reaction beginS, the 
degree of cure distribution with FV = 0.4 elevates abruptly while the curves for FV = 0.6 e 
FV = 0.8 present a smoother increase.  

At the die exit, both elliptic and parabolic methods results for axial degree of cure profile 
is higher when FV = 0.4 (Fig. 7b). However, as noted by Kim et al (1997), the manufacture of 
pultruded bars with small fiber to resin composition ratio can commit the mechanical 
resistance of the final composite material.  

 
5. CONCLUSIONS 
 

At this work the pultrusion process was numerically simulated using the finite element 
method. A comparison between an elliptic model (Taylor-Galerkin) and a parabolic 
approximation showed a good agreement for the axial temperature and degree of cure 
distributions for small pseudo time stop integration. Although, it is important to note that the 
parabolic scheme has some advantages: it requires smaller computational time processing and 
is easier to be implemented than the elliptic model.  

The results also showed that the pulling speed and the fiber volume fraction are important 
parameters that affect the degree of cure and the final product quality.  

Both methodologies were shown appropriate to analyze the heating system 
characteristics, allowing a better equipment project and could be applied in other fiber/resin 
composite materials.  
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