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Abstract. The concept of effective transport velocity is introduced to derive a discontinuity
capturing operator for convection-diffusion problems. The effective transport velocity, which
depends both on the flow velocity and on the local solution gradient, is used to modify the
classical representation of the convective term. As a result, the discontinuity capturing
operator arises naturally in the derivation of a Petrov-Galerkin method obtained via a least-
squares approach. The weighting functions thus obtained introduce stabilising terms acting
both on the streamline and the gradient directions. The numerical examples presented
demonstrate the effectiveness of the proposed method. These include the classical problem of
the advection of a steep profile skew to the mesh and the computation of the temperature field
in a free convection problem.
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1.  INTRODUCTION

The Galerkin method is ill suited for the analysis of convection dominated problems. The
so-called best approximation property, which the Galerkin formulation exhibits for self-
adjoint operators, is lost whenever convection terms are present. In practice, the application of
the Galerkin formulation to convective problems results in spatial oscillations (wiggles) that
may pollute the solution on the whole analysis domain.

A major advance was obtained with the development of the Streamline Upwind Petrov-
Galerkin (SUPG) method (Brooks & Hughes, 1982), also known as Anisotropic Balancing
Dissipation (Kelly et al., 1980). In such method upwinding is introduced along streamlines
and a stabilising diffusive term, acting only on the streamline direction, is generated. Hence
the name Anisotropic Balancing Dissipation. Most importantly, this effect is achieved within
the framework of consistent Petrov-Galerkin formulations. Other successful finite element
approaches to the solution of convection dominated problems, such as the Taylor-Galerkin
(Donea, 1984), Characteristic-Galerkin (Lohner et al., 1984) and least-squares based methods



(Carey & Jiang, 1988), (De Sampaio,1991), can be also shown to be consistent Petrov-
Galerkin formulations.

The SUPG method presents good stability and accuracy if the exact solution is regular.
For non-regular solutions, though, localised wiggles may appear in regions containing sharp
layers, unresolvable on the finite element mesh. Hughes et al.(1986) addressed this problem
adding an extra perturbation to the SUPG weighting function. The effect of this extra
weighting is to create a Discontinuity Capturing Operator, which introduces diffusion along
the direction of the solution gradient. Improved results were obtained near sharp layers, at the
expense of introducing a non-linear mechanism to the computation of the Petrov-Galerkin
weighting functions. Galeão and Do Carmo (1988) pursued this line of research further,
attempting to define the most appropriate upwind direction. The Streamline and the
Discontinuity Capturing Operators were later generalised to multi-dimensional advective-
diffusive systems in the works of Hughes & Mallet (1986).

In this paper the scope is restricted to the transient multi-dimensional convection-
diffusion equation. In section 2, we review the derivation of a Petrov-Galerkin method based
on a least-squares approximation of the time-discretised convection-diffusion problem (De
Sampaio, 1991). This allows relating the time-step used in the time discretisation with the so-
called intrinsic time-scales and upwind parameters. In section 3, we introduce the concept of
effective transport velocity to obtain a natural derivation of the discontinuity-capturing
operator. The effective transport velocity depends on the flow velocity and on the solution
gradient. The resulting discontinuity-capturing operator does not create the undesirable
doubling effect of the original SUPG+discontinuity capturing formulation, thus avoiding ad
hoc corrections. Numerical examples are presented in section 4. The first example is the
classical problem of the advection of a steep profile using a velocity field skew to the mesh.
Next, we show the method working within our Navier-Stokes finite element program (De
Sampaio & Coutinho, 1999), in the computation of the temperature field in a free convection
problem. The effectiveness of the present approach in controlling wiggles is demonstrated.

Finally, concluding remarks are presented in section 5.

2.   A LEAST-SQUARES BASED PETROV-GALERKIN METHOD

Let us consider the conservation of energy for an incompressible flow. The problem is
defined on the open bounded domain Ω, with boundary Γ, contained in the nsd-dimensional
Euclidean space. The energy equation is written using the summation convention for
b=1,...,nsd , in Cartesian co-ordinates, as
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In the above equation T is temperature, bu  is the flow velocity and Q is a volumetric heat

source. Density and specific heat are denoted by ρ  and c, respectively. The heat-flux is

defined according to Fourier’s law by bb xTq ∂∂−= κ , where κ  is  the thermal conductivity.

Fluid properties are assumed constant throughout.
As the flow is assumed incompressible, i.e. 0=∂∂ bb xu , we can also write the energy

balance Eq.(1) as a typical convection-diffusion equation,
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The problem boundary conditions are prescribed temperature and heat-flux, T and q ,

respectively. These are specified on non-overlapping parts of the boundary TΓ  and qΓ , such

that TTT Γ= on  and qbb qnq Γ= on . Note that bn  denotes the outward normal to the

surface.

2.1  Discretisation

Here we consider a least-squares approach to approximating the energy convection-
diffusion equation. The method is similar to that employed by Carey & Jiang (1988) for
hyperbolic problems. In the present case, though, we need to introduce the second order
spatial derivatives corresponding to diffusive effects.

In order to derive the method, let us define the energy squared residuals as
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The superscripts in the above equations denote the time-level. Note that θ , varying from
zero to one, parameterises time between the time level n and the time-level n+1, respectively.

The time-step is denoted by nn ttt −=∆ +1 . Furthermore, T̂ , �ua  and Q̂  are interpolated fields
corresponding to temperature, velocity and volumetric heat source, respectively.  These fields
are interpolated using standard 0C  element shape functions denoted by Ni. For the time being

we do not specify any particular spatial discretisation for 2/1+n
aq and treat the heat flux

contribution as a source term.
Minimising  S  with respect to the free temperature parameters we obtain
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Note that Eq.(5) states a Petrov-Galerkin weighted residual formulation. It still has to be
modified to include the heat-flux boundary condition. Recalling that qbb qnq Γ= on , the

following result is obtained after using Green’s identity to rewrite the Galerkin diffusive
contribution to Eq.(5):
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At this point we have to introduce the spatial discretisation of the heat flux. Based on
Fourier’s law, this is expressed in terms of the discretised temperature field as
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The shape functions iN  have 0C  continuity. Therefore, in view of the above

discretisation of the heat-flux, the last term in Eq.(6) is not well defined on element interfaces.
In practice this term is evaluated on the element interiors eΩ , where it has the required
regularity. The resulting approximation is given by
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It is important to remark that the Petrov-Galerkin formulation above leads to symmetric
systems if linear elements are used, i.e., linear triangles in 2D or linear tetrahedra in 3D.

2.2 Optimal time-steps

Note that the weighting function applied to energy balance, Eq.(5), has the streamline
upwind Petrov-Galerkin structure (Brooks & Hughes, 1982). For 21=θ  we have,
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For linear elements, a proper amount of streamline upwinding is introduced choosing the
time-step as
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In the above equations n
a

n
a uu=nu is the local velocity modulus and he  is the

characteristic element size (the square root of the element area). The element Peclet number is

κρ ehcPe nu= .

Note that α , defined by Eq.(11), is the so-called optimal upwind parameter, whose
choice leads to nodally exact solutions for one-dimensional steady-state problems.



The time-step given by Eq.(10), associated to the optimal upwind parameter, is
appropriate to follow the time evolution of the convection-diffusion processes resolvable in a

mesh with size eh  (De Sampaio, 1991). Indeed, Eq.(10) yields ∆t he
n= / u  in the pure

convection limit ( Pe →∞), whereas for pure diffusion  ( Pe = 0 ) it yields khct e 6/2ρ=∆ .

The relationship between the time-step given by Eq.(10), also called the intrinsic time
scale, and the modelling of the sub-grid (or unresolvable) scales was investigated by Hughes
(1995). It is important to remark that the time-step calculated from the optimal upwind
parameter α  varies from element to element, according to the local velocity and mesh size.
Thus, one has to use local time-stepping to get accurate steady-state solutions via pseudo
transients. In cases where real transient solutions are sought, special algorithms are required to
accommodate the use of these spatially varying time-steps (De Sampaio, 1993).

3.    DISCONTINUITY CAPTURING

In this section we shall present a simple and natural way to introducing a discontinuity
capturing operator in the method presented in section 2.

Let us consider a velocity field w aligned with the temperature gradient direction, as
depicted in Fig.1. This velocity field, which we call the effective transport velocity, is defined
according to the following expression:
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Figure 1 - The effective transport velocity w .

Obviously, w is defined only where a temperature gradient exists. In particular, note that
the name effective transport velocity comes from the fact that TT ∇⋅=∇⋅ uw .
We can also define a velocity field v, combining the flow velocity field u and the velocity w
given by Eq.(12). This velocity field can be written as ( )wuv γγ −+= 1 , where

10 ≤≤ γ . The parameter γ  is chosen to be 1=γ  wherever 0=∇ T , ensuring that the field v



is always well defined. Most importantly, the convective term can be rewritten using the
velocity v instead of the flow velocity u, as TT ∇⋅=∇⋅ uv .

In the sequel the derivation of the method presented in section 2 is repeated, this time
with T∇⋅v  in place of T∇⋅u . We shall see that the resulting Petrov-Galerkin formulation
embedds a discontinuity capturing operator.

3.1 A Petrov-Galerkin/least-squares method embedding discontinuity capturing

Using the velocity field v, the residual θ+nR̂ given by Eq.(4) can be recast as
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Therefore, using the least-squares procedure presented in section 2.1, we obtain the
following Petrov-Galerkin formulation
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Like Eq.(8), note that Eq.(14) is symmetric for linear triangles in 2D and for linear
tetrahedra in 3D. Most importantly, rather than introducing dissipation in the streamline
direction only, i.e., the direction of the flow velocity u, the Petrov-Galerkin formulation above
introduces dissipation in the direction of the velocity field v.

It is a simple matter to show that Eq.(14) embeds both the streamline upwinding and the
discontinuity capturing operators. These operators arise from the interaction between the non-
Galerkin part of the weighting function and the convective term, as indicated below
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The first integral on the right hand side of Eq.(15) is the streamline diffusion operator,
whilst the second integral is the discontinuity capturing operator. Note that the discontinuity
capturing operator has the same structure of the one introduced by Hughes, Mallet &
Mizukami (1986). However, in (Hughes et al., 1986) the streamline and the discontinuity
capturing operators are always superimposed. This means that an undesirable doubling effect,
causing excessive diffusion if u and T∇ are aligned, requires some special ad hoc correction.



This is unnecessary for the method presented herein: the summation of the two operators add
to the correct amount of directional diffusion in case the alignment of u and T∇ does occur.

The criterion to select the time-step is the same described in section 2.2, but now using v
rather than u in Eq.(10)-(11). The Peclet number used to compute α  is also redefined in terms

of v, i.e., κρ ehcPe nv= .

We must also choose the γ  parameter. One can devise a scheme where 1=γ  in regular
regions (only streamline upwinding) but switching to 5.0=γ  in regions containing sharp
layers, in order to activate both operators in such regions. Other alternatives are possible: in
the examples shown in section 4 we have chosen 5.0=γ , changing to 1=γ  only if the
temperature gradient vanishes locally.

4. NUMERICAL EXAMPLES

The following numerical examples demonstrate the effectiveness of the proposed method
in controlling wiggles.

The first example is the classical problem of the advection of a steep profile by a velocity
field skew to the mesh. This is a two-dimensional steady state high convection problem with a
uniform  velocity field. The analysis domain is a square with side L, as indicated in Fig.2. The
global Peclet number is 810== κρ LcP u .

The temperature boundary condition on the left face is
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Homogeneous temperature boundary conditions (T=0) are imposed on the other faces.

Figure 2 - Advection of a steep temperature profile: domain and boundary conditions.



Considering the global Peclet number of 810  and the given boundary conditions, the
exact solution will have the following properties: a) virtually no smearing of the profile
imposed on the left face, as this profile is advected to the interior of the domain. b) there will
be a sharp boundary layer at the top face, where the internal solution must drop to zero in
order to satisfy the boundary condition imposed there.

For this steady-state example we have used 1=θ . Computations were made with u
aligned to directions (1,1) and (2,1). For each of these directions we present results obtained
with 1=γ , i.e., without discontinuity capturing, and with 5.0=γ , where both the streamline
upwinding and discontinuity capturing operators are active.

The numerical results can be seen in Figures 3 and 4. These are presented in the form of
temperature elevations viewed from the downstream corner C shown in Fig.2. Note that
wiggles are responsible for unrealistic temperature values, lower than zero or higher than one,
in the analyses performed. The proposed method, with 5.0=γ , yields sharp solutions with
much better control of wiggles than the results obtained with 1=γ .
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Figure 3 - Advection of a steep temperature profile: velocity aligned to direction (1,1).
(a) temperature obtained with 1=γ . (b) temperature obtained with 5.0=γ .
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Figure 4 - Advection of a steep temperature profile: velocity aligned to direction (2,1).
(a) temperature obtained with 1=γ . (b) temperature obtained with 5.0=γ .



In the next example we simulate the external free convection flow that develops around a
hot horizontal pipe with external diameter D. The temperature of the pipe surface exceeds that
of the surrounding fluid by T∆ . We have used the method presented in section 3, working
within our incompressible Navier-Stokes solver (De Sampaio & Coutinho, 1999), to
approximate the convection-diffusion of energy. It is important to note that temperature
wiggles create spurious sources and sinks of momentum that affect the computation of the
flow field in free convection problems. Thus, there is a special need for controlling wiggles in
free convection analyses.

The problem is parameterised by the non-dimensional groups of Grashof and Prandtl,
given by 232 µβρ DTGr ∆= g  and κµcrP = , respectively. Note that g is the gravity

acceleration and β  is the volumetric thermal expansion coefficient. The fluid properties of
viscosity, specific heat at constant pressure and thermal conductivity are denoted by µ , c  and
κ , respectively.

For this transient problem the fluid is considered initially at rest. The initial non-
dimensionalised fluid temperature is 0* =T . The non-dimensionalised temperature at the pipe
surface is maintained at 1* =T  as a fixed boundary condition. Computations have been
performed with 810=Gr  and Pr=0.72. We have chosen 5.0=θ  for better transient accuracy.
Analyses have been made using both 1=γ   and  5.0=γ .

Figure 5 presents temperature iso-lines close to the cylinder surface at time

( ) 2/12/130 gTDt ∆= β . Note the presence of spurious iso-lines and unrealistic temperatures

(higher than one or lower than zero) for the run without discontinuity capturing, i.e., 1=γ .
Note that the results obtained using 5.0=γ , corresponding to streamline upwinding plus
discontinuity capturing,  are much better.
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Figure 5. Free convection around a hot pipe ( 72.0  ;  108 == rPGr ): (a) temperature isolines
obtained with 1=γ . (b) temperature isolines obtained with 5.0=γ .



5. CONCLUDING REMARKS

A natural derivation of a discontinuity capturing for convection-diffusion problems has
been presented. This derivation is based on the concept of effective transport velocity, which
depends both on the flow velocity and on the solution gradient, and on the use of a Petrov-
Galerkin/least-squares formulation. The numerical examples shown clearly demonstrate the
effectiveness of the method in controlling undesirable wiggles.
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