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Abstract. The annular flow pattern formed by two immiscible liquids of very different
viscosities (also called 'core annular flow') has found important applications in the
transportation of heavy oils in horizontal pipes, through the addition of small quantities of a
thinner fluid (usually water). Here the vertical flow is focused, in view of its possible
application in heavy oil production. Including the interfacial tension and neglecting inertial
terms in the annulus, equations are derived which govern the shape of the liquid-liquid
interface. First, it is shown that the interface must be circular in the pipe cross section, as
expected. Besides, the condition that pressure is continuous on each side of the interface leads
to the conclusion that the interface profile generally presents axially symmetric waves, whose
shape is governed by the Laplace-Young equation. Its solution reveals interface shapes which
are entirely compatible with the "bamboo waves" observed by Bai, Kelkar & Joseph (1996)
for upward flow. A simple model for wavelength prediction is proposed, which is in
reasonably good agreement with presently available data.
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1. INTRODUCTION

The production of heavy oil is a big problem worldwide due to the great technological
difficulties associated with handling highly viscous crudes. In the Brazilian deep water
scenario, these difficulties are still more dramatic in view of the low temperature at the sea
bottom.

To facilitate the flow of thick oils through the well, the oil viscosity is usually decreased
through the addition of light diluents, dispersants or heat. The former case demands the
existence of light oil in the same production area, while the later is relatively expensive.

A new alternative for lifting heavy oils (above 102 cP) is based upon the great
accumulated experience in the transport of highly viscous fluids by injection of small amounts
of water, in such a way to create an appropriate lubrication of the oil and to establish an
annular pattern of liquid-liquid flow called ‘core flow’ or ‘core-annular flow’. In fact, this
flow pattern is shown to require the smallest pumping power (Oliemans, 1986), since the



highly viscous oil flows in the center and is surrounded by a water ring close to the tube wall.
Laboratory experiments (Prada, 1999) with a very viscous oil (17,600 cP) and water,
confirmed that the pressure drop in vertical core flow is comparable with the expected for
single phase water flow at mixture volumetric flow rate. Besides, the thin water annulus
requires injection of a small amount of water, thus making the core flow pattern an attractive
alternative for the lift of heavy crudes. However, this idea has not yet been tested in real
production apparatus.

Ooms et al. (1984) proposed the use of the lubrication theory for the pressure gradients
determination in horizontal core annular flow. The theory assumes that the core moves at a
single velocity and inertial terms can be neglected. Using a previously imposed periodic
interface shape, they solve the resulting Reynolds differential equation of the lubrication.

Bai, Kelkar & Joseph (1996) took photographs and recorded movies of the interfacial
waves, observing the axisymmetry of the flow. They also measured the oil volume fraction,
interfacial wavelength and pressure drop. Based on data for their system, Bannwart (1998)
proposed a method of indirect measure of the oil fraction through the measure of the speed of
the interfacial waves.

The present work focus on the hydrodynamics of ascending vertical oil-water flow in the
core-annular pattern, for possible application in the production of heavy crudes. Taking into
account the interfacial tension (i.e. the liquid-liquid surface tension) and making use of
common assumptions of small annulus-to-core viscosity ratio and thin water ring, we derive
equations governing the shape of the liquid-liquid interface.

2. PROBLEM FORMULATION AND ANALYSIS

Considering the general flow picture shown in Fig. 1 the following assumptions are
made: a) laminar incompressible isothermal flow of Newtonian fluids; b) the fluid in the
center (phase 1) is much thicker than the annulus (phase 2); c) thin annulus:  R – ri  <<  R. A
cylindrical coordinate system (r,θ,z) with velocity components (u,v,w) respectively is taken.
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Figure 1 – Problem geometry



From assumption b), fluid 1 can be considered as moving axially at a single velocity W
and pressure can be considered hydrostatic over this phase. Then, for a referential moving
with fluid 1, we have u1 = v1 = w1 = 0 and the annulus flow is steady over a wavelength λ.
From assumption c), it can be concluded from magnitude analysis that the radial velocity
component of the annulus flow is much smaller than the other components, i.e. u2  << v2  and
u2 << w2 . Under these conditions the Navier-Stokes equations for each phase become:
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where  gr = - gy cosθ , gθ = gy sinθ, gy = g cosξ, gz = - g sinξ. Note that w2 represents the axial
velocity component of phase 2 relative to phase 1. From Eq. (5), the relation between
pressures  p2  and  p2i  (pressure of fluid 2 at the interface) is

i2iy2i22 pcos)rr(gpp ≅θ−ρ+= (8)

The jump condition relating pressures at the interface (Laplace-Young law) is

i
i2i1 R

2pp
σ=− (9)



where σ  is the interfacial tension  and Ri is the radius of curvature of the interface (not to be
confused with ri , which represents the radial position of the interface). Using Eqs. (8-9) and
(1-3) to eliminate pressure gradients in Eqs. (6-7) and since  r ≅  ri  in the annulus, leads to
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For vertical upward flow, taking v2 = 0, Eqs. (10-12) become
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Equations (13-15) form a set in the variables u2, w2 and Ri. Equation (14) is satisfied if Ri

= Ri(z), i.e. the interface must be circular in the pipe cross section. In the following we
suggest an approach to determine Ri(z) from Eq. (15).

3. LUBRICATION THEORY ASSUMPTION

The basic assumptions of lubrication theory are
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where λ is the interfacial wavelength. Under these conditions inertial terms can be neglected
in Eq. (15) and the problem simplifies considerably. These assumptions are discussed by
Oliemans (1986). In this situation, Eq. (15) becomes

const
r

w

zd

)R/1(d
2g)(

2
2

2

2
i

12 =
∂

∂
µ=σ−ρ−ρ (17)



Thus:

o2
2

2

C
rd

wd = (18)

and

( ) 1
i

C
zR

2

dz

d =







(19)

Solution of Eq. (18) is straightforward and leads to the traditional parabolic velocity
profile. Focusing on the analysis of Eq. (19), the average curvature of the interface can be
expressed as (see Fig. 2)
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Figure 2 – Radius of curvature of the interface

Since pressure must be continuous on each side of the interface, its curvature must be a
continuous function as well. Furthermore, the curvature must be periodic, i.e.
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It can be concluded that  C1 = 0  in Eq. (20). As a consequence, interfacial tension causes no
net force on the flow and the interface is characterized by a constant curvature (C2) i.e.
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which is the Laplace-Young equation. Since Eq. (22) remains unchanged under the
substitution of  z → –z, it can be concluded that interfacial waves are symmetric (i.e. ri(z) is
an even function) with respect to a certain cross section plane. Taking the origin  z = 0  at
such plane (see Fig. 2) three boundary conditions are required, which are taken as:
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where the parameters  k, Ro and the wavelength λ are to be determined from known

information. At z = 0, Eq. (22) then gives  2
o
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Solution of Eq. (24) is possible when  k  is in the range  -1 ≤ k ≤ 1. For –1 ≤ k < 0, the
periodic solutions form a chain of beads like a pearl necklace and satisfy (1+k)/(1-k) ≤ ri/Ro ≤
1. For  0 < k ≤ 1, the solutions are similar to the "bamboo waves" observed by Bai et al.
(1996) and satisfy  1 ≤ ri/Ro ≤ (1+k)/(1-k). It is important to note that the later pattern was
observed for upward oil-water flow, whereas the former seems to correspond to downflow.
For  k = 0  the interface is cylindrical and no waves are formed. Integration of Eq. (24) gives
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Figure 3 – Interface shape for several values of k



where 
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r
r~ =   and  
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z
z~ = . Some illustrative interface profiles according to Eq. (25) are

shown in Fig. 3 for representative values of  k.
Joseph & Renardy (1993) observed that the filaments connecting the crests of the waves

thicken and the average wavelength decreases when the superficial velocity of the oil
increases for a constant superficial velocity of water. Analyzing the results presented in Fig. 3,
it can be noticed that the wavelength decreases and the amplitude increases when  k
increases. The development of the interfacial wave with the increase of  k  corresponds to the
expected result for increasing volumetric fraction of the oil core.

4. ADJUSTING THE MODEL WITH AVAILABLE DATA

The three parameters to be adjusted are  k, Ro and Rmax. The parameter  k  was adjusted
through comparison with available experimental data of Bai et al. (1996), who employed a
motor oil (density = 0.905 g/cm3, viscosity = 6 poise) and water in a tube of 0.9525 cm ID.
Interfacial tension for this system was 0.0225 N/m. The value that best fitted all interface
shapes was k ≅  0.229, as can be seen in the example of Fig. 4.
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In their work, Bai et al. (1996) provided wavelength data at different flow conditions.
From Eq. (25), the wavelength can be related to  Ro  and  Rmax  by
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Finally, information about the volumetric fraction  α  of the oil can be obtained from the
correlation developed by Bannwart (1998), which was adjusted from data of the same system
investigated by Bai et al. (1996):
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annulus fluid. Using Eqs. (24-25), the following expression for  α  can be derived
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Equations (26) and (28) make it possible to adjust the parameters  Ro and Rmax  from data
for  λ  and  α , for a specified  k . The results are shown in Table 1 for the data points supplied
by Bai et al. (1996). Although few data are presently available, the excellent quality of the
wavelength fit is encouraging.

Table 1 – Adjusted values of Ro and Rmax (k = 0.229)

Data from Bai et al. (1996) Fit with present theory
Run J1 [m/s] J2 [m/s] λ [m] α λ [m] Ro [m] Rmax [m]

1 3.56E-01 1.85E-01 0.0121 0.645 0.0121 0.0035 0.00446
2 2.55E-01 1.85E-01 0.0131 0.565 0.0131 0.0031 0.00420
3 1.55E-01 1.85E-01 0.0141 0.435 0.0140 0.00265 0.00388
4 1.04E-01 1.85E-01 0.0122 0.341 0.0121 0.00239 0.00345
5 1.04E-01 9.07E-02 0.0137 0.499 0.0138 0.00284 0.00405
6 1.55E-01 9.07E-02 0.0179 0.604 0.0179 0.00295 0.00450
7 2.05E-01 9.07E-02 0.0134 0.675 0.0133 0.00348 0.00455
8 2.55E-01 9.07E-02 0.0117 0.725 0.0116 0.00370 0.00455
9 3.06E-01 9.07E-02 0.0090 0.761 0.0090 0.00402 0.00455

10* 1.00E-01 4.68E-02 0.0124 0.633 0.0124 0.00337 0.00437
11* 1.93E-01 4.68E-02 0.0082 0.789 0.0082 0.00410 0.00453
12* 2.85E-01 4.68E-02 0.0054 0.852 0.0054 0.00436 0.00455

(* average wavelength obtained from photographs)

5. A SIMPLE MODEL FOR WAVELENGTH PREDICTION

As seen in the precedent section, a constant value of the parameter  k  can fit different
flow conditions. Assuming this is generally true for fully developed wavy core flow,



determination of the interface becomes a closed problem if the wavelength  λ  can be
predicted, besides the volumetric fraction of the core.

In section 4, it has been shown that interfacial tension does not exert any net force on the
core. However, it is not meant that force does not act. Like in ascending bubbles, interfacial
tension keeps the core from breaking up into slugs, preserving it as a continuous phase.
Besides, by analogy with the critical bubble diameter concept, we propose that interfacial
tension determines the average stable wavelength of the waves. In fact, while the net buoyant
force stretches the core against shear, interfacial tension acts oppositely to stabilize the core as
a continuous phase. The ratio between Archimedes and capillary forces is (Fig. 5)
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Table 2 - Results for the Eötvos number Eov

Run J1 [m/s] J2 [m/s] λ [m] α Eov

1 3.56E-01 1.85E-01 0.0121 0.645 0.908
2 2.55E-01 1.85E-01 0.0131 0.565 0.920
3 1.55E-01 1.85E-01 0.0141 0.435 0.869
4 1.04E-01 1.85E-01 0.0122 0.341 0.666
5 1.04E-01 9.07E-02 0.0137 0.499 0.904
6 1.55E-01 9.07E-02 0.0179 0.604 1.300
7 2.05E-01 9.07E-02 0.0134 0.675 1.029
8 2.55E-01 9.07E-02 0.0117 0.725 0.931
9 3.06E-01 9.07E-02 0.0090 0.761 0.734

10 1.00E-01 4.68E-02 0.0124 0.633 0.922
11 1.93E-01 4.68E-02 0.0082 0.789 0.681
12 2.85E-01 4.68E-02 0.0054 0.852 0.564



Equation (30) agrees with the experimentally observed trend that  λ  decreases with
increasing  α. Using again Eq. (27) to determine  α  from the flow rates and the wavelength
data given in Table 1, Table 2 is obtained. Though a certain spread is observed, the results are
reasonably supportive of the idea of a unity Eötvos number, whose average was 0.87 and
standard deviation 18 %. More data are clearly necessary to confirm Eq. (30).

6. CONCLUDING REMARKS

A new formulation is proposed for the equations governing the upward oil-water flow in
core-annular pattern, when the liquid-liquid interfacial tension is taken into account. The new
feature is the determination of the interface shape as part of the solution of the
hydrodynamics. Neglecting inertial terms and turbulence in the annulus flow, the equation
governing the interface shape is the Laplace-Young equation. It is shown that interfacial
tension does not exert any net force in axi-symmetric flow, although its action in shaping the
interface is decisive. This contrasts with the case of horizontal flow, where curvature
gradients may cause a net capillary force on the core (Bannwart, 2000). The interfacial shapes
obtained are constant curvature, periodic solutions entirely compatible with the "bamboo
waves" observed by Bai et al. (1996) for upward flow, provided that a positive parameter ( k
≅  0.229 ) is selected. A simple theory for wavelength prediction as a function of the
volumetric fraction is proposed, whose agreement with the limited data available is
nevertheless encouraging. Experiments are currently being done at UNICAMP to confirm the
theory proposed.
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