ESTUDO DO FLUXO DE RADIAÇÃO SOLAR E DO REGIME DOS VENTOS EM ITAJUBÁ

LEANDRO DA SILVA SALES E RICARDO D. M. CARVALHO

Departamento de Engenharia Mecânica Universidade Federal de Engenharia de Itajubá Av. BPS, 1303, Pinheirinho 37500-903 Itajubá, MG

Palavras-chave: PCD-INPE-UNIFEI, Radiação Solar Acumulada, Velocidade e Direção

dos Ventos

RESUMO

Os dados climáticos são, muitas vezes, o ponto de partida para a elaboração de projetos que, direta ou indiretamente, dependem das características do clima local. Conjuntos de dados obtidos no passado são analisados com a expectativa de que o comportamento verificado se repita em períodos futuros. Saintive (2001) estudou o comportamento da temperatura e umidade do ar na cidade de Itajubá durante o período de abril de 1998 a março de 2001 utilizando dados gerados pela plataforma de coleta de dados do Instituto Nacional de Pesquisas Espaciais (INPE) localizada no campus da UNIFEI. No presente trabalho, dá-se continuidade a este estudo analisando-se o comportamento da radiação solar e o regime dos ventos no mesmo período.

Os dados brutos do fluxo de radiação solar e da velocidade e direção dos ventos foram obtidos a cada três horas. Com base nestes dados, foram calculados valores da radiação solar acumulada diariamente (RadSolDia) para cada dia do período amostrado utilizando-se planilhas desenvolvidas especificamente para este fim no programa Microsoft Excel. Nestas planilhas, separam-se claramente os dados em radiação acumulada a cada três horas, radiação diária e radiação mensal para todos os anos. Foi então possível avaliar-se a disponibilidade de energia solar na cidade ao longo do ano. A Tabela 1 e a Figura 1 mostram estes resultados.

Tabela 1: Valores médios mensais da radiação solar acumulada diariamente (RadSolDia), em MJ/m², em Itajubá no período de outubro de 1998 a julho de 2001.

Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
19,73	18,87	17,88	18,91	14,94	13,44	14,38	16,77	17,53	18,88	19,77	18,79

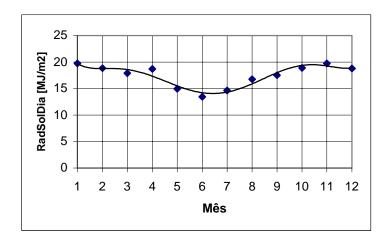


Figura1: Comportamento da radiação solar acumulada diariamente ao longo do ano.

Os valores médios de RadSolDia são mais altos nos meses quentes e mais baixos nos meses frios, como era de se esperar. Para o período amostrado, o valor mais baixo se deu em junho (13,44 MJ/m².dia) e o mais alto em novembro (19,77 MJ/m².dia). Há ainda uma grande variação de RadSolDia, de um dia ao outro, nos meses quentes do ano (devido à nebulosidade variável) e pouca variação nos meses frios (já que os dias são limpos).

Os dados brutos do vento são medidas da magnitude e direção da sua velocidade tomadas a 10 m do solo. Os dados foram distribuídos em várias planilhas onde se podem obter a velocidade média horária (V_{mh}) , velocidade média diária (V_{md}) , velocidade média mensal (V_m) e a direção predominante do vento para cada mês do período amostrado. Os resultados obtidos são mostrados na Tabela 2 e, graficamente, na Figura 2.

Tabela 2: Valores médios da velocidade do vento, em m/s, em Itajubá no período de maio de 1998 a dezembro de 2000.

Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1998					1,2		1,5	1,4	1,5	1,8	1,8	
1999	3,0	2,9	3,0	2,9	3,0	2,8	2,9	3,0	3,0	3,2	3,1	3,2
2000	3,1	3,1	2,9	3,0	3,0			3,0	3,1	3,2	3,1	4,3
$V_{\rm m}$	3,0	3,0	2,9	3,0	2,4	2,8	2,2	2,5	2,6	2,8	2,7	3,7

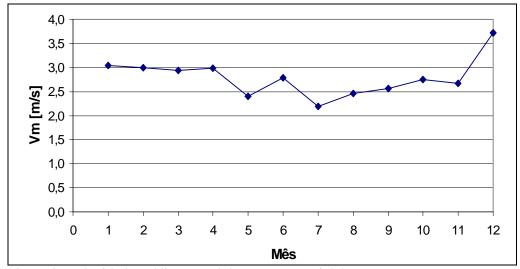


Figura 2: Velocidade média mensal do vento em Itajubá.

A maior velocidade média mensal ocorreu em dezembro (3,7 m/s) e a menor se deu no mês de julho (2,2 m/s). A velocidade média mensal permaneceu aproximadamente constante em 3,0 m/s entre os meses de janeiro a abril. De maio a novembro a velocidade variou entre 3,2 m/s e 2,7 m/s.

Uma vez tratados os dados de radiação solar e do vento e de posse dos resultados obtidos por Saintive (2001), estudou-se o desempenho de um coletor solar plano para uso doméstico, suposto localizado em Itajubá, com área frontal de 1,6 $\rm m^2$ e inclinado de 33° em relação à horizontal. Nesta análise, considerou-se que se deseja obter 200 litros de água quente ao final do dia. A Tabela 3 mostra os resultados dos cálculos feitos, onde constam a temperatura da água ao final do dia ($\rm T_{out}$) e a eficiência do coletor para cada mês ($\rm \eta$).

Tabela 3: Desempenho de um coletor solar doméstico em Itajubá.

Mês	Vento [m/s]	Horas de Sol Diárias [horas]	Vazão [kg/s]	Radiação Incidente [W/m²]	†1	T _{out} [°C]	η [%]
Jan	3,00	13,20	0,0042	376,684	358,060	41,7	56,1
Fev	3,00	12,70	0,0044	388,233	353,209	41,6	56,7
Mar	2,90	12,10	0,0046	412,994	380,358	41,5	57,4
Abr	3,00	11,47	0,0048	533,915	498,109	44,1	57,8
Mai	2,40	10,90	0,0051	481,906	456,484	37,5	59,5
Jun	2,80	10,63	0,0052	469,436	445,219	36,6	59,6
Jul	2,20	10,73	0,0052	494,048	484,676	37,2	59,9
Ago	2,50	11,20	0,0050	506,944	475,669	39,8	58,9
Set	2,60	11,80	0,0047	437,147	406,243	39,5	58,2
Out	2,80	12,43	0,0045	407,060	372,996	40,6	57,2
Nov	2,70	13,00	0,0043	386,325	350,813	40,2	56,7
Dez	3,70	13,33	0,0042	355,000	316,512	40,1	55,6

A maior temperatura atingida pela água ao final do dia ocorreu no mês de abril (44,1°C) e a eficiência do coletor foi de 57,8%. A menor temperatura da água se deu em julho (37,2°C) com eficiência do coletor de 59,9%. O objetivo de se inclinar o coletor é compensar a variação anual da declinação solar, de modo que a radiação incidente durante todo o ano seja a mais perpendicular possível. Ao se inclinar o coletor de 33°, a maior radiação incidente no coletor ocorreu no mês de abril, o que justifica a temperatura final da água mais elevada neste mês. Verifica-se também que a temperatura atingida pela água ao longo do ano foi satisfatória, já que, até mesmo nos meses de inverno, a água aqueceu-se suficientemente para uso doméstico.

AGRADECIMENTOS: Os autores agradecem Renata da Gama Saintive pela orientação inicial a respeito da manipulação dos dados no Excel e a Flávio de Carvalho Magina, gerente do Centro de Missão de Coleta de Dados (INPE) pelos dados fornecidos.

REFERÊNCIAS BIBLIOGRÁFICAS:

Bezerra, A.M. – Aplicações Térmicas da Energia Solar, Segunda Edição, Editora Universal.

Duffie, J.A., Beckman, W.A. – Solar Energy Thermal Prosseses, 1974.

Incropera, F.P., Dewitt, D.P. – Fundamentals of Heat and Mass Transfer, Second Edition, 1985.

Kakaç, S., Yener, Y. - Convective Heat Transfer, Second Edition.

Saitive, R.G. – Desenvolvimento do Ano Bioclimático de Referência para Itajubá, Trabalho de Iniciação Científica, UNIFEI, 2001.

Souza, A.A.W. – Fundamentos da Teoria da Energia Solar e de seu Uso, Primeira Edição, 1994.