APLICAÇÃO DO FMEA E QFD ÀS MELHORIAS DO ITAJUBAJA C.G.P. Zanovello (1), L.G.M. de Souza (2), J.B. Turrioni(2)

- (1) Instituto de Engenharia Mecânica, Departamento de Mecânica, UNIFEI, Universidade Federal de Itajubá, Av. BPS, 1303, Itajubá MG, CEP: 37.500-090.
- (2) Instituto de Engenharia Mecânica, Departamento de Produção, UNIFEI, Universidade Federal de Itajubá, Av. BPS, 1303, Itajubá MG, CEP: 37500-090

Palavras chaves: FMEA, QFD, Itajubaja, Mini Baja. RESUMO

O Projeto MINI-BAJA EFEI existe desde 1997, tendo participado em 2000, 2001 e 2002 das Competições SAE-Brasil Petrobras MINI-BAJA (no ano de 2002 com o nome de Equipe Saci I e II).

Este projeto tem como objetivo proporcionar um maior contato do aluno de Engenharia Mecânica com a indústria automobilística e permite colocar em prática a teoria obtida em salas de aula.

Escolheu-se o FMEA e QFD como ferramentas de melhoria aplicadas ao Baja pois estes permitem "quantificar as características/desdobramentos da qualidade" do produto, facilita a correção de problemas, são largamente aplicáveis à engenharia automobilística, permite um arquivamento destes dados para posteriores consultas a serem feitas por equipes subseqüentes, dentre outras vantagens.

Os resultados obtidos refletem em sua totalidade nas preocupações reais com o Baja, seja na fase de projeto, seja na fase de produção.

Resumo dos processos pelos quais a conclusão foi alcançada:

O Itajubaja foi dividido em grupos mecânicos (suspensão (dianteira e traseira), direção, transmissão, estrutura e freios) para a aplicação do FMEA, pois consideram-se estes os mais importantes para o funcionamento adequado de um carro.

As matrizes de QFD foram obtidas usando os conceitos da Trilogia Juran da Qualidade, partindo do princípio que o consumidor final do Baja é o mesmo que um consumidor de carro *off-road*.

O objetivo deste artigo é fazer a comparação entre os anos de 2000 e 2001, mostrando quais as melhorias obtidas no projeto e quais os outros pontos a serem melhorados futuramente.

Figura 1. Modelo Kano da Qualidade.

		Cliente: Escola Federal de Engenharia de Itajubá								
		Produto: Estrutura								
FMEA após ações recomenda das			Processo: Solda/Corte/Dobra/Montagem							
	Dispo si- tivo	Função		Falhas Pos	ssíveis	Índices Atuais				
			Modo	Efeito	Causa	G	О	D	T	
1	Habit á- culo do piloto	Proteger o piloto contra acidente s	Quebr a dos tubos	Não realização da proteção	Dimensionamento incorreto	9	3	1	27	
2	Pára- choq ues	Absorçã o de choques	Quebr a	Não realização da absorção	Dimensionamento incorreto	9	2	2	36	
3	"Sant O Antô nio" (acim a da cabeç a do piloto)	Proteçã o contra capo- tagens	Quebr a dos tubos	Não realização da proteção	Dimensionamento incorreto	9	1	4	36	

Figura 2. Exemplo de aplicação do FMEA.

Características	Estrutura	Transmissão	Direção	Freios
das partes Requisitos do projeto				
Peso	X	X	X	X
Manutenção		X	X	X
Consumo		X		
Tração	X	X	X	

Operações	de	Corte	Soldagem	Montagem	Fresa
fabricação					

Características das				
partes				
Transmissão			X	X
Direção	X	X	X	
Freios			X	

		О	QUAND	QUEM?	ONDE?	COMO?
		QUÊ?	O?			
Mon	Trans	Verifica	Fim de	Operador	Setor produtivo	Teste no próprio
-	-	r ajuste	operação	responsável		setor
tage	missã					
m	О					
	Direç	Verifica	Fim de	Operador	Setor produtivo	Teste no próprio
	ão	r	operação	responsável		setor
		funcion				
		a-mento				
	Freio	Verifica	Fim de	Operador	Setor produtivo	Teste no próprio
	S	r	operação	responsável		setor
		eficiênc				
		ia				

Figura 3. Exemplo de aplicação do QFD

Conclusões: com base nos dados vistos acima, pode-se concluir que, pela análise do FMEA e QFD, a equipe obteve uma melhora significativa principalmente relacionada com relação à performance do bólido, seja no quesito resistência como no quesito velocidade. Caso a equipe opte por fazer esta análise comparativa dos modelos para os anos subseqüentes, ficará mais fácil a visualização dos pontos a serem trabalhados no carro.

Agradecimentos: os autores agradecem ao CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, e à Equipe UNIFEI Mini Baja pela cessão dos dados recolhidos durante os anos de 2000 e 2001.

REFERÊNCIAS BIBLIOGRÁFICAS:

Baxter, M. - "Projeto de Produto", Ed. Edgard Blücher, 2ª edição, 1999.

Akao, Y. - "Quality Function Deployment: Integrating Customer Requirements Into Product Desing", Productivity Press.

Harding, J. A., Omar, A. R., Poppewell, K. - "Applications of QFD within a Concurrent Engineering Environment", International Journal of Aglie Management Systems, 1999, pp. 88-98.

Ginn, D. M., Jones, D. V., Rahnejat, H., Zairi, M. - "The 'QFD/FMEA Interface", European Journal of Innovation Management, vol. 1, # 1, 1998, pp. 7-20.

Kano, N., Seraku, N., Takashi, F., Tsuji, S. - "Attractive Quality and Must-be Quality", The Journal of Japanese Society for Quality Control, vol. 14, # 2, 1994, pp. 39-48.

Akao, Y. - "An Introduction to Quality Function Deployment", Productivity Press, Cambridge, 1990.