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Abstract. In this work, the first part of this study, the Steger and Warming and the Radespiel and Kroll schemes are 
implemented following a MUSCL approach, aiming to guarantee second order accuracy and to achieve TVD 
properties, and employing an implicit formulation to solve the Euler equations in the two-dimensional space. These 
schemes are implemented according to a finite volume formulation and using a structured spatial discretization. Both 
schemes are flux vector splitting ones. The MUSCL approach employs five different types of nonlinear limiters, which 
assure TVD properties, namely: Van Leer limiter, Van Albada limiter, minmod limiter, Super Bee limiter and -limiter. 
All variants of the MUSCL schemes are second order accurate in space. The implicit schemes employ an ADI 
approximate factorization to solve implicitly the Euler equations. Explicit and implicit results are compared, as also 
the computational costs, trying to emphasize the advantages and disadvantages of each formulation. The schemes are 
accelerated to the steady state solution using a spatially variable time step, which has demonstrated effective gains in 
terms of convergence rate according to Maciel. The algorithms are applied to the solution of the physical problem of 
the moderate supersonic flow along a compression corner. The results have demonstrated that the most accurate 
solutions are obtained with the Steger and Warming TVD scheme using Van Leer and minmod nonlinear limiters, when 
implemented in its explicit version. 
 
Keywords: Steger and Warming algorithm, Radespiel and Kroll algorithm, MUSCL procedure, Implicit formulation, 
Euler equations. 

 
 
1. INTRODUCTION 

 
 Conventional non-upwind algorithms have been used extensively to solve a wide variety of problems (Kutler, 
1975). Conventional algorithms are somewhat unreliable in the sense that for every different problem (and sometimes, 
every different case in the same class of problems) artificial dissipation terms must be specially tuned and judicially 
chosen for convergence. Also, complex problems with shocks and steep compression and expansion gradients may defy 
solution altogether. 
 Upwind schemes are in general more robust but are also more involved in their derivation and application. Some 
first order upwind schemes that have been applied to the Euler equations are: 
 Steger and Warming (1981) method, whose authors used the remarkable property that the nonlinear flux vectors of 
the inviscid gasdynamic equations in conservation law form are homogeneous functions of degree one of the vector of 
conserved variables to develop their algorithm. This property readily permitted the splitting of the flux vectors into 
subvectors by similarity transformations so that each subvector had associated with it a specified eigenvalue spectrum. 
As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes were 
developed for first-order hyperbolic systems of equations. 
 Radespiel and Kroll (1995) emphasized that the Liou and Steffen Jr. (1993) scheme had its merits of low 
computational complexity and low numerical diffusion as compared to other methods. They also mentioned that the 
original method had several deficiencies. The method yielded local pressure oscillations in the shock wave proximities, 
adverse mesh and flow alignment problems. In the Radespiel and Kroll (1995) work, a hybrid flux vector splitting 
scheme, which alternated between the Liou and Steffen Jr. (1993) scheme and the Van Leer (1982) scheme, in the 
shock wave regions, is proposed, assuring that the resolution of strength shocks was clear and sharp. 
 Second order spatial accuracy can be achieved by introducing more upwind points or cells in the schemes. It has 
been noted that the projection stage, whereby the solution is projected in each cell face (i-1/2,j; i+1/2,j) on piecewise 
constant states, is the cause of the first order space accuracy of the Godunov schemes (Hirsch, 1990). Hence, it is 
sufficient to modify the first projection stage without modifying the Riemann solver, in order to generate higher spatial 
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approximations. The state variables at the interfaces are thereby obtained from an extrapolation between neighboring 
cell averages. This method for the generation of second order upwind schemes based on variable extrapolation is often 
referred to in the literature as the MUSCL (“Monotone Upstream-centered Schemes for Conservation Laws”) approach. 
The use of nonlinear limiters in such procedure, with the intention of restricting the amplitude of the gradients 
appearing in the solution, avoiding thus the formation of new extrema, allows that first order upwind schemes be 
transformed in TVD high resolution schemes with the appropriate definition of such nonlinear limiters, assuring 
monotone preserving and total variation diminishing methods. 
 Traditionally, implicit numerical methods have been praised for their improved stability and condemned for their 
large arithmetic operation counts (Beam and Warming, 1978). On the one hand, the slow convergence rate of explicit 
methods become they so unattractive to the solution of steady state problems due to the large number of iterations 
required to convergence, in spite of the reduced number of operation counts per time step in comparison with their 
implicit counterparts. Such problem is resulting from the limited stability region which such methods are subjected (the 
Courant condition). On the other hand, implicit schemes guarantee a larger stability region, which allows the use of 
CFL numbers above 1.0, and fast convergence to steady state conditions. Undoubtedly, the most significant efficiency 
achievement for multidimensional implicit methods was the introduction of the Alternating Direction Implicit (ADI) 
algorithms by Douglas (1955), Peaceman and Rachford (1955), and Douglas and Gunn (1964), and fractional step 
algorithms by Yanenko (1971). ADI approximate factorization methods consist in approximating the Left Hand Side 
(LHS) of the numerical scheme by the product of one-dimensional parcels, each one associated with a different spatial 
coordinate direction, which retract nearly the original implicit operator. These methods have been largely applied in the 
CFD community and, despite the fact of the error of the approximate factorization, it allows the use of large time steps, 
which results in significant gains in terms of convergence rate in relation to explicit methods. 
 In this work, the first part of this study, the Steger and Warming (1981) and the Radespiel and Kroll (1995) 
schemes are implemented following a MUSCL approach, aiming to guarantee second order accuracy and to achieve 
TVD properties, and employing an implicit formulation to solve the Euler equations in the two-dimensional space. 
These schemes are implemented according to a finite volume formulation and using a structured spatial discretization. 
Both schemes are flux vector splitting ones. The MUSCL approach employs five different types of nonlinear limiters, 
which assure TVD properties, namely: Van Leer limiter, Van Albada limiter, minmod limiter, Super Bee limiter and -
limiter. All variants of the MUSCL schemes are second order accurate in space. The implicit schemes employ an ADI 
approximate factorization to solve implicitly the Euler equations. Explicit and implicit results are compared, as also the 
computational costs, trying to emphasize the advantages and disadvantages of each formulation. The schemes are 
accelerated to the steady state solution using a spatially variable time step, which has demonstrated effective gains in 
terms of convergence rate according to Maciel (2005, 2008a). The algorithms are applied to the solution of the physical 
problem of the moderate supersonic flow along a compression corner. The results have demonstrated that the most 
accurate solutions are obtained with the Steger and Warming (1981) TVD scheme using Van Leer and minmod 
nonlinear limiters, when implemented in its explicit version. 

 
2. EULER EQUATIONS 

 
 The fluid movement is described by the Euler equations, which express the conservation of mass, of the linear 
momentum and of the energy to an inviscid mean, heat non-conductor and compressible, in the absence of external 
forces. These equations can be represented, in the integral and conservative forms, to a finite volume formulation, by: 
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where Q is the vector of conserved variables written to a Cartesian system, V is the cell volume, nx and ny are 
components of the normal unit vector to the flux face, S is the flux area, and E and F are components of the convective 
flux vector. The Q, E and F vectors are represented by: 
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with  being the fluid density; u and v are Cartesian components of the velocity vector in the x and y directions, 
respectively; e is the total energy per unit volume of the fluid mean; and p is the static pressure of the fluid mean. 
 The Euler equations were nondimensionalized in relation to the freestream density, , and in relation to the 
freestream speed of sound, a, to the studied problem in this work. The matrix system of the Euler equations is closed 
with the state equation of a perfect gas 
 

  )(5.0)1( 22 vuep  ,                                                                                                                                     (3) 
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considering the ideal gas hypothesis.  is the ratio of specific heats. The total enthalpy is determined by    peH . 

 
3. NUMERICAL ALGORITHMS 
 
 The Steger and Warming (1981) and the Radespiel and Kroll (1995) first order schemes are described in details in 
Maciel (2008b,c). In the present work, only the numerical flux vector of these schemes is presented: 
 
3.1 Steger and Warming (1981) Algorithm 
 
 The Steger and Warming (1981) numerical flux vector is constructed by the following normal flux projection: 
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where the eigenvalues of the normal Jacobian matrix are defined as 
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with v


 being the flow velocity vector, a is the speed of sound (  pa ),  sign indicates the positive or negative 

parts of the projection flux vector and of the eigenvalues. The eigenvalue separation is defined to the  direction, for 
example, as: 
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ith “l” varying from 1 to 4 (two-dimensional space). The parameter  is defined as 
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The numerical flux vectors of the Steger and Warming (1981) scheme, based on a finite volume formulation, is 
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calculated as: 
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here S is the flux area described in Maciel (2008b,c). More details of the theory in the implementation of the Steger 

.2 Radespiel and Kroll (1995) Algorithm 

The definition of the residual or the numerical flux vector at the (i+1/2,j) interface of the Radespiel and Kroll 
9
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(1 95) scheme proceeds as follows: 
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ith R [cell (i+1,j)] and L [cell (i,j)] related to right and left states; S, Sx and Sy defining the flux area and its x and y w

components; these parameters are defined in Maciel (2008c); the superscript “e” defines Euler equations;  is the 
dissipation function which defines the particular numerical scheme. Mi+1/2,j defines the advection Mach number at the 
(i+1/2,j) face of the (i,j) cell, which is calculated according to Liou and Steffen Jr. (1993) as: 
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                                                  (11) 

here the separated Mach numbers M+/- are defined by the Van Leer (1982) formulas: 
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L and MR represent the Mach number associated with the left and right states, respectively. The Mach number at the M

cell interface to the calculation of the separated Mach numbers is defined by: 
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The pressure at the (i+1/2,j) face of the (i,j) cell is calculated by a similar way: 

                                                                                          (14) 

ith p+/- denoting the pressure separation defined according to the Van Leer (1982) formulas: 
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The definition of the  dissipation term which determines the Radespiel and Kroll (1995) scheme combines the Van 

ee

                                                                                                                    (16) 
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L r (1982) and the Liou and Steffen Jr. (1993) (AUSM) schemes. Hence, 
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. MUSCL PROCEDURE 

Second order spatial accuracy can be achieved by introducing more upwind points or cells in the schemes. It has 

were 0  and 0.5, respectively. M re details of the theory in the implementation of the Radespiel and Kroll (1995) 
algorithm, the reader is encouraged to read Maciel (2008c). 
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been noted that the projection stage, whereby the solution is projected in each cell face (i-1/2,j; i+1/2,j) on piecewise 
constant states, is the cause of the first order space accuracy of the Godunov schemes (Hirsch, 1990). Hence, it is 
sufficient to modify the first projection stage without modifying the Riemann solver, in order to generate higher spatial 
approximations. The state variables at the interfaces are thereby obtained from an extrapolation between neighboring 
cell averages. This method for the generation of second order upwind schemes based on variable extrapolation is often 
referred to in the literature as the MUSCL approach. The use of nonlinear limiters in such procedure, with the intention 
of restricting the amplitude of the gradients appearing in the solution, avoiding thus the formation of new extrema, 
allows that first order upwind schemes be transformed in TVD high resolution schemes with the appropriate definition 
of such nonlinear limiters, assuring monotone preserving and total variation diminishing methods. Details of the present 
implementation of the MUSCL procedure, as well the incorporation of TVD properties to the schemes, are found in 
Hirsch (1990). The expressions to calculate the fluxes following a MUSCL procedure and the nonlinear flux limiter 
definitions employed in this work, which incorporates TVD properties, are defined as follows. 
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 The conserved variables at the interface (i+1/2,j) can be considered as resulting from a combination of backward 
and forward extrapolations. To a linear one-sided extrapolation at the interface between the averaged values at the two 
upstream cells (i,j) and (i-1,j), one has: 
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leading to a second order fully one-sided scheme. If the first order scheme is defined by the numerical flux 
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igher order flux vector splitting methods, such as those studied in this work, are obtained from: 
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ll second order upwind schemes necessarily involve at least five mesh points or cells. 
limiters are employed, replacing 
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 To reach high order solutions without oscillations around discontinuities, nonlinear 
th term  in Eqs. (18) and (19) by these limiters evaluated at the left and at the right states of the flux interface. To 
define such limiters, it is necessary to calculate the ratio of consecutive variations of the conserved variables. These 
ratios are defined as follows: 
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here the nonlinear limiters at the left and at the right states of the flux interface are defined by 
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with “l” varying from 1 to 4 (two-dimensional space), signal  being equal to 1.0 if r   0.0 and -1.0 otherwise, r  is the 

rical flux vectors following this MUSCL procedure, second order spatial 

. IMPLICIT FORMULATION 

All implicit schemes studied in this work used an ADI formulation to solve the algebraic nonlinear system of 

l l l

ratio of consecutive variations of the lth conserved variable and  is a parameter assuming values between 1.0 and 2.0, 
being 1.5 the value assumed in this work. 
 With the implementation of the nume
accuracy and TVD properties are incorporated in the algorithms. 
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equations. Initially, the nonlinear system of equations is linearized considering the implicit operator evaluated at the 
time “n” and, posteriorly, the pentadiagonal system of linear algebraic equations is factored in two tridiagonal systems 
of linear algebraic equations, each one associated with a particular spatial direction. Thomas algorithm is employed to 
solve these two tridiagonal systems. The implicit schemes studied in this work were only applicable to the solution of 
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the Euler equations, which implies that only the convective contributions were considered in the RHS (“Right Hand 
Side”) operator. 

 The ADI form of the Steger and Warming (1981) and of Radespiel and Kroll (1995) TVD schemes is defined by 
the following two step algorithm: 
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where the matrices A and B are defined as: 
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with the  and  being the eigenvalues of the Euler equations, defined in Maciel (2006, 2008b,c); diag [] is a diagonal 
matrix; and the similarity transformation matrices are defined by: 
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The properties defined at interface are calculated by arithmetical average and  and  defined according to Maciel 

(2006, 2008b,c). The RHS operator required in Eq. (29) is defined to the Steger and Warming (1981) TVD scheme as: 

'
xh '
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with )(
,2/1

~ SW
jiF   calculated according to Eq. (8). The RHS operator defined to the Radespiel and Kroll (1995) TVD scheme 

is defined as: 
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with  calculated according to Eq. (10). The cell volume, Vi,j, is calculated according to Maciel (2006, 2008c). )(
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6. SPATIALLY VARIABLE TIME STEP 
 
 The basic idea of this procedure consists in keeping constant the CFL number in all calculation domain, allowing, 
hence, the use of appropriated time steps to each specific mesh region during the convergence process. Hence, 
according to the definition of the CFL number, it is possible to write: 
 
   jijiji csCFLt ,,,  ,                                                                                                                                           (

 

41) 

here CFL is the “Courant-Friedrichs-Lewy” number to provide numerical stability to the scheme; 

nformation transport. On a finite volume context,  is chosen as the minor 

 found

. INITIAL AND BOUNDARY CONDITIONS 

.1 Initial Conditions 

Values of freestream flow are adopted for all properties as initial condition, in the whole calculation domain, to the 
ud

w

 c
5.022   is the maximum characteristic speed of information propagation in the calculation domain; 

 
value  between the minor centroid distance, involving the (i,j) cell and a neighbor, and the minor cell side length. 
 

jiji avu ,, 


and   jis ,  is a characteristic length of i jis ,

7
 
7
 
 
st ied problem in this work (Jameson and Mavriplis, 1986, and Maciel, 2002): 
 

   TMMMQ 25.0)1(1sincos1   ,                                                                                       (42) 

here M represents the freestream Mach number and  is the flow attack angle. 

.2 Boundary Conditions 

The boundary conditions are basically of three types: solid wall, entrance and exit. These conditions are 
p

) Wall condition: This condition imposes the flow tangency at the solid wall. This condition is satisfied considering 

g an inviscid formulation. The same 

) Entrance condition: 
hree properties are specified and one is extrapolated, based on analysis of information 

tream flow values. 

) Exit condition: 
: Three characteristic directions of information propagation point outward the computational domain 

lated from the interior domain due to the fact that all four characteristic 

 
w
 
 
7
 
 
im lemented in special cells named ghost cells. 
 
(a
the wall tangent velocity component of the ghost volume as equals to the respective velocity component of its real 
neighbor cell. At the same way, the wall normal velocity component of the ghost cell is equaled in value, but with 
opposite signal, to the respective velocity component of the real neighbor cell. 
 The pressure gradient normal to the wall is assumed be equal to zero, followin
hypothesis is applied to the temperature gradient normal to the wall, considering adiabatic wall. The ghost volume 
density and pressure are extrapolated from the respective values of the real neighbor volume (zero order extrapolation), 
with these two conditions. The total energy is obtained by the state equation of a perfect gas. 
 
(b
(b.1) Subsonic flow: T
propagation along characteristic directions in the calculation domain (Maciel, 2002). In other words, three characteristic 
directions of information propagation point inward the computational domain and should be specified. Only the 
characteristic direction associated to the “(qnormal-a)” velocity can not be specified and should be determined by interior 
information of the calculation domain. Pressure was the extrapolated variable to the present problem. Density and 
velocity components had their values determined by the freestream flow properties. The total energy per unity fluid 
volume is determined by the state equation of a perfect gas. 
(b.2) Supersonic flow: All variables are fixed with their frees
 
(c
(c.1) Subsonic flow
and should be extrapolated from interior information (Maciel, 2002). The characteristic direction associated to the 
“(qnormal-a)” velocity should be specified because it penetrates the calculation domain. In this case, the ghost volume’s 
pressure is specified by its freestream value. Density and velocity components are extrapolated and the total energy is 
obtained by the state equation of a perfect gas. 
(c.2) Supersonic flow: All variables are extrapo
directions of information propagation of the Euler equations point outward the calculation domain and, with it, nothing 
can be fixed. 
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8. CONCLUSIONS 
 
 In the present work, first part of this study, the theories involving the extension of the first order versions of the 
numerical schemes of Steger and Warming (1981) and of Radespiel and Kroll (1995) to second order, incorporating 
hence TVD properties through a MUSCL approach, and the implicit numerical implementation of these second order 
TVD schemes are detailed. The schemes are implemented on a finite volume context, using a structured spatial 
discretization. First order time integrations like ADI approximate factorization are programmed. The Euler equations in 
conservation and integral forms, in two-dimensions, are solved. The steady state physical problem of the moderate 
supersonic flow along a compression corner is studied and compared with theoretical results. A spatially variable time 
step procedure is also implemented aiming to accelerate the convergence to the steady solution. The gains in 
convergence with this procedure were demonstrated in Maciel (2005, 2008a). The results have demonstrated that the 
most accurate solutions are obtained with the Steger and Warming (1981) TVD scheme using Van Leer and minmod 
nonlinear limiters, when implemented in its explicit version. 
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