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Abstract. For a long time parametric excitation in engineering systems was associated mainly with parametric resonances
and harmful vibrations. Parametric excitation seemed to have only negative effects on the dynamics of systems and
therefore research was focused on how to avoid or at least minimize the adverse consequences of parametric excitation.
However, recent research results have shown that parametric excitation may cause not only harmful instabilities in a
dynamical system but can also improve the capability of a system to suppress vibrations. In particular it is possible to
avoid the onset of an instability by introducing parametricexcitation to the system. These findings are quite new and the
numerous possibilities of making use of it still need to be explored and discussed.
In this article the basics of parametric excitation as a means to suppress vibrations in engineering systems are presented
and several theoretical and experimental studies are reviewed. The potential of this novel design concept is discussedand
directions for further research and future practical applications are outlined.
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1. INTRODUCTION

If an excitation is applied to a mechanical system it will, ingeneral, vibrate. Most of the time these vibrations are
unwanted and require countermeasures if the vibration amplitudes exceed a certain level. Depending on the nature of the
excitation, different strategies and methods of vibrationreduction are in use. This contribution focuses on a rather new
idea to reduce, and in some cases even cancel vibrations in mechanical systems by means of parametric excitation.

In mechanical systems different types of excitation are observed. A frequently encountered type is theexternal excita-
tion, also namedforced excitation. Unbalance excitation as known from rotating machinery is one example, the excitation
of a structure which is attached to a vibrating foundation isanother. Vibration amplitudes are determined by the dynam-
ical properties of the system and the amplitude of excitation. In the case of a linear system, vibration amplitudes are
proportional to excitation amplitudes and damping properties of the system. Vibration reduction for the system in general
is achieved mainly by either choosing these parameters appropriately or by tuning the system as to avoid resonances.

Although mentioned in first place, the reduction of vibrations caused by external excitation will only play a minor role
in this paper. We will almost exclusively deal with mechanical systems where two other types of excitation mechanisms
are prevailing: Self-Excitation (SE) and Parametric Excitation (PE). As in most practical cases, self-excitation will be
the source of unwanted vibrations. It will be shown that parametric excitation can be employed as a mean to suppress
self-excited vibrations, as well as free vibration.

2. PARAMETRIC EXCITATION - PAST AND PRESENCE

Parametrically excited systems have been of interest sincea long time, and research dates back as far as to the 19th
century, when M.Faraday investigated sloshing liquids in acontainer and, about 30 years later, when E.Mathieu established
the famous equation given his name. Since then, parametric excitation (PE) has attracted much interest, mainly becauseit
may lead to a unique type of resonances, calledparametric resonances. Given the available space, it is virtually impossible
to even give a brief overview and just name the important contributions in this field of ongoing active research.

From an application point of view and focussing on mechanical engineering two different aspects of parametric excita-
tion can be extracted from the numerous references: how to avoid or reduce the effect of parametric excitation in a system
and how to take advantage of PE, especiallyPE-resonances. The second aspect is much less popular and not very many ap-
plications of PE in this sense are known. Within this area, the idea prevails, to make use of the large amplitudes which will
occur when a system is operated at a parametric resonance. For instance, recent works focus on micro-electromechanical
systems (MEMS) as a possible application, see e.g. [Shaw et al., 2004]. However, not all PE-resonances lead to large
amplitudes, since some of them may benon-resonant. This special case has not been studied at all, until Tondl found out
about an interesting phenomenon associated with non-resonant parametric resonances [Tondl, 1998] .

In his paper Tondl shows early results obtained from analog computer simulations of an unstable, non-linear, paramet-
rically excited system, see Fig.1. The surprising detail inthis result is a frequency interval of the PE, where the self-excited
vibration amplitudes of the system are completely suppressed. Since this occurs at the frequency of a parametric reso-
nance, the phenomenon was namedparametric anti-resonance.

This pioneering work triggered research efforts at variousplaces. It led to a growing number of contributions related
to this phenomenon, only some of them shall be mentioned here. Analytical methods and bifurcation analysis have been
applied by Verhulst and his students [Fatimah, 2002], [Abadi, 2003]. Very comprehensive investigations, both analytically
and numerically were carried out by [Dohnal, 2005] and this author [Ecker, 2005]. Parametric excitation of a more general
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Figure 1. Simulation result (obtained with an analog computer) of a self-excited system exhibiting vibration suppression
near the parametric combination resonance frequencyη0 = Ω2 − Ω1. From [Tondl, 1998]

type has been applied by Makihara in im Tokio [Makihara,Ecker,Dohnal,2005] and valuable contributions have been made
also by Nabergoj from Trieste [Nabergoj,Tondl,2001]. Lastbut not least, Tondl himself has continued to study the effect
of vibration quenching by parametric excitation [Tondl, Nabergoj, Ecker, 2005] and e.g. has also investigated parametric
damping and parametric mass excitation, see [Tondl, 2001].

3. MODELLING SYSTEMS WITH PARAMETRIC STIFFNESS EXCITATION

The generic equations of motion of a mechanical system with parametric stiffness excitation can be written in a rather
general matrix form as

Mẍ +
[

C + G(ν) + CZ(x)
]

ẋ +
[

K + N(ν) + KZ(x)
]

x + KPE(t)x = Fex. (1)

The vector of deflections is denotedx. For a linear, homogeneous system with constant system matrices, only the fol-
lowing matrices would be needed and therefore non-zero: mass matrixM, damping matrixC, stiffness matrixK. Para-
metric stiffness excitation (PSE) is introduced by matrixKPE(t) with time-periodic coefficients according to harmonic
functionscos(ωt + pij). Only single-frequency PSE with frequencyω is considered for this system but multi-location
parametric excitation is not excluded. Phase relations between different locations of PE are introduced by phase angles
pij

KPE(t) = cos(ωt + pij)PE. (2)

The number of degrees of freedom of the system determines thesize of the system matrices. It is pretty obvious how to
establish these matrices for simple two or three mass chain systems, as used in [Tondl, Nabergoj, Ecker, 2005] and several
other references by the author.

Self-excitation can be introduced to the system by setting elements of the damping matrixC to a negative value.
Negative damping is one of the common methods to represent the effect of flow-induced self-excitation [Blevins, 1977].

Basic non-linear behavior can be represented by the additional stiffness and damping matricesCZ(x) andKZ(x),
which may depend in an arbitrary way on vectorx and also, if required, oṅx.

Matrix G(ν) is a function of a system parameterν and is needed in mechanical systems to represent gyroscopic
forces, which would depend on a rotational speedν. Also frequently encountered in rotor systems are non-conservative
forcesN(ν)x, created by bearings and seals. Such forces usually increase with increasing rotor speed and may ultimately
destabilize such a system. It is of particular interest to investigate rotor system, since the effect of a parametric anti-
resonance could improve the performance of rotating machinery quite significantly. Finally, to take into account the effect
of external forces,Fex appears on the right hand side of Eq.(1).

4. PARAMETRIC RESONANCE FREQUENCIES

It is widely known, see e.g. [Cartmell, 1990], that a system with parametric excitation may exhibitPrinciple Paramet-
ric Resonancesat frequenciesηpr

j/n andParametric Combination Resonancesat frequenciesηcr
j±k/n for the PSE-frequency

ω equal to:

η
pr
j/n =

2Ωj

n
, ηcr

j±k/n =
|Ωj ± Ωk|

n
, (j 6= k), (j, k, n = 1, 2, 3, ...). (3)
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SymbolsΩj andΩk denote thej-th (k-th) natural frequency of the system. The denominatorn represents the order
of the parametric resonance. Most of the time only first orderresonancesn = 1 of the lowest frequenciesΩ1,Ω2 are
significant. The effect of a parametric anti-resonance can only occur for parametric combination resonances. It depends
on the system, whether the difference type or the summation type isnon-resonantand can be used to achieve vibration
suppression. It can be shown that for a symmetric stiffness matrix K = KT parametric vibration suppression will occur
for the difference-type combination resonanceηcr

(j−k)/1 = (Ωj − Ωk) and that an interval of instability will be observed
at the summation-type combination resonanceηcr

(j+k)/1 = (Ωj + Ωk).
To predict the appropriate PE-frequency for vibration suppression it is necessary to know the natural frequencies of

the system. Therefore, the lower undamped natural frequencies Ω1,2,3,... have to be calculated from system Eq.(1) by
solving the eigenvalue problem forMẍ + Kx = 0.

5. ANALYSIS OF SYSTEMS WITH PARAMETRIC EXCITATION

In its most general version Eq.(1) defines a set of non-homogeneous, non-linear, time-periodic differential equationsof
second order. Also because of its basically unlimited complexity with regard to the size of the system there does not exist
a single method to suit all kind of problems. Depending on theactual size of the problem, the presence of non-linearities
and inhomogeneous terms, different methods are advantageous to be applied. Another factor is also if time series of
system states of the original problem are sought or if only the local stability of such a solution is of interest.

5.1 Numerical simulation method

The most direct method, which can be applied to virtually anykind of such problems is numerical simulation. By inte-
grating the system equations in the time domain, starting from initial conditions, the solution is computed. Nonlinearities
and large matrices only affect the computational speed, butwould not prevent using simulation. Of course, appropriatein-
tegration methods have to be applied, to balance computational effort and accuracy. Nevertheless, CPU-time may become
still a problem, when the stability of a system near the stability threshold shall be investigated and very slowly changing
transients have to be followed.

5.2 Analytical methods

A number of analytical and semi-analytical methods have been developed to deal with time-periodic systems. Even
trying to briefly introduce the most interesting ones would exceed the length of this overview by far. Therefore, only one
method is explicitly mentioned, since it has been used quitesuccessfully in this context. This method is nowadays mostly
calledMethod of Averaging(MoA). However, based on being promoted by Krylov, Bogoliubov and Mitropolski, in the
past the method is also associated with these names. A ratherdetailed comparison of three distinctively different methods
is presented in [Ecker, 2005].

The Method of Averaging is applicable to a linear(ized) and homogeneous subset of Eq.(1) and will primarily provide
information about the stability of the system. It can be implemented as a first order method, as well as for higher orders.
However, deriving a first order solution can be already cumbersome for a low-dimensional system. This, and the need
to identify a small parameter in the system, are the major disadvantages of this method. But to be fair, a price has to
be paid with practically every of the analytical methods. A very recent and detailed presentation of MoA is found in
[Verhulst, 2006]. The application to PE-systems of variouscomplexity is thoroughly discussed in [Dohnal, 2005].

The advantages of analytical methods can be seen easily by the following example. Equations (3) and (4) are a
simplified and normalized version of Eq.(1), which have beenused by Tondl and others to investigate the stability of
PE-excited two-degree of freedom systems.

u′′ + Ω2u = −ε (Θu′ + cos ητQcu) , (4)

u =

[

u1

u2

]

, Θ =

[

Θ11 Θ12

Θ21 Θ22

]

,

Ω2 =

[

Ω2
1 0

0 Ω2
2

]

, Qc =

[

Qc
11 Qc

12

Qc
21 Qc

22

]

.

(5)

By application of the Method of Averaging two necessary conditions are obtained for stability at a parametric excitation
frequencyη = (Ω2 − Ω1):

Θ11 + Θ22 > 0, (6)

Θ11Θ22 +
1

4Ω1Ω2
Qc

12Q
c
21 > 0. (7)
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Not only the stability of the system can be examined for a certain PE-frequency. It is also possible to calculate the
frequency interval of stability in the vicinity of this frequency. The interval is defined as

η0 + εσlo < η < η0 + εσhi. (8)

with

σlo,hi = ∓
(Θ11 + Θ22)

2

√

−
Qc

12Q
c
21

4Ω1Ω2Θ11Θ22
− 1. (9)

It is interesting to note that first order averaging leads to exactly the same results as obtained in (Tondl, 1998) by a different
method based on Floquet theory.

In exchange for compact results, one has to accept that accuracy is degraded as soon as the parameterε < 1 cannot be
considered as small anymore, at least if only a first order approximation is used.

5.3 Numerical stability analysis

The stability of the trivial solutionx = 0 of system Eq.(4),(5) can be investigated also numerically by means of
Floquet-theory, see [Verhulst, 2006]. Floquet’s theorem postulates that for a system of first order differential equations

ẏ = A(t) y, A(t) = A(t + T ), (10)

with aT -periodic matrixA(t) each fundamental matrixM(t) of the system can be represented as a product of two factors

M(t) = Q(t) exp(tC), (11)

whereQ(t) is aT -periodic matrix function andC is a constant matrix.
Stability of the time-periodic system can be determined either from the eigenvalues of theFloquet exponent matrix

C or from themonodromy matrixM(T ), which is in fact the state transition matrix evaluated after a periodT . The
monodromy matrix can be calculated numerically by repeatedintegration of the system equations over one periodT ,
starting from independent sets of initial conditions. It isconvenient to use the columns of the identity matrixI as initial
vectors to start from. By solvingn initial value problems over one periodT

ẏ = A(t)y, [y(0)1,y(0)2, ...,y(0)n] = I, t = [0, T ], (12)

and by arranging the results as follows

M(T ) = [y(T )1,y(T )2, ...,y(T )n] (13)

the monodromy matrix is obtained. Finally the eigenvalues of the monodromy matrix

Λ = eig(M(T )), (14)

are calculated numerically. The system is unstable if any ofthe eigenvalues are larger than one in magnitude

max(|Λ1|, |Λ2|, ..., |Λn|)

{

< 1 stable system
> 1 unstable system.

(15)

This procedure leads to a very efficient numerical method, which allows to examine the stability of a parametrically
excited system much faster than with direct numerical integration. This method, however, cannot be used when nonlin-
earities are present and will not give vibration amplitudes.

6. EXAMPLES

In this section several examples of mechanical systems withparametric excitation are presented, to demonstrate the
capabilities of the proposed method. Due to limited space, not all the details for every model can be included and therefore
references are given where to find the full documentation foreach example.

6.1 Two-mass system

In Figure 2 a schematic is shown of a two-mass system with one stiffness element being periodically changed according
to k01(t) = k01(1 + ec

01 cos(ωt). It is assumed that the damping elementc02 < 0 and therefore the system may exhibit
self-excited vibrations. To demonstrate the stabilizing effect of parametric excitation, the system was investigated for the
critical value of parameterc02 at the stability threshold. In Fig. 3 the stable area is filledwhite and the unstable area is
grey. This result was obtained by a numerical stability analysis. One can see easily that significantly lower values of the
critical parameterc02 are possible at the combination resonance frequency of the systemΩ2 − Ω1. This indicates that PE
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Figure 2. Two-mass system with self-excitation because of negative dampingc02 < 0 and parametric stiffness excitation
atk01(t).

at this frequency and with a sufficiently high amplitude willallow for an increase of the self-excitation parameter without
becoming unstable. If the wrong frequency is chosen, however, then the effect is turned upside down, as one can see from
the result in the vicinity of the parametric combination resonance of the summation type.

The stability threshold, separating stable and unstable regions, is also plotted as a broken line, near the parametric
resonances. These two lines have been obtained by analytical formulas for the interval of stability, similar to Eqs.(8)and
(9). Note that also the interval of instability nearΩ1 + Ω2 can be obtained with rather high accuracy, compared to the
numerical solution. The full set of data for this example canbe found in [Ecker, 2005].
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Figure 3. Typical stability map for a system as shown in Fig.2. White areas indicate a stable system, grey areas instability
due to self-excitation. Stability threshold is calculatednumerically (solid line) and by analytic formulas (broken lines).

6.2 Vibration suppression by PE in rotor systems

In this section numerical studies and also one experimentalstudy will be reviewed and discussed, that demonstrate
how parametric excitation could be employed in a rotor system to enhance it’s performance. At present these design
concepts may seem to be futuristic and not readily applicable in a real world machine. Since this is a well known scenario
for an emerging new technology, it is likely worth the time and effort to investigate and explore the benign aspects of
parametric excitation.

All the following studies have two facts in common which we can put in front of this discussion. (1) Parametric
excitation is introduced byopen-loop controlof a system parameter. (2) Thefrequencyof the harmonic parameter variation
where thebest performanceis achieved will be near the difference type of thecombination resonance frequencyη−

21/1 =
ωe

2 − ωe
1.

Note that the available space does not allow to fully document the models and parameters used in the examples below.
The reader is referred to the references where the models areexplained comprehensively and details are listed.

6.3 Rigid rotor and time-periodic bearing mounts

There is a multitude of rotor systems, where the rotor can be considered as a rigid body and the flexibility of the system
is located within the rotor bearings and the bearing mounts.Especially air-bearings, but also fluid-film bearings can create
destabilizing forces at high rotor speeds and the rotor may become unstable beyond a speed threshold. By introducing a
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Figure 4. Rigid rotormR, θR supported by flexible bearing mounts with time-periodic stiffness componentk(t). Bearing
parameterskB , cB lead to instability of first vibrational mode beyond stability thresholdν ∼= 0.8, see speed map to the

right.
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Figure 5. Stability charts for rotor system with PSE of bearing mounts. Left: Increase of stability threshold atη = 2.0
for different levels of PSE amplitude (0, 20, 40, 60% ofkavg). Right: Change of optimal PSE-frequency and stability
interval as a function of bearing masses due to change of natural frequencies. See [Ecker, Tondl, 2004] for details and

system data.

time-varying stiffness of the bearing support the system becomes parametrically excited and can benefit from an increased
stability limit. In first studies [Ecker, Tondl, 2004] and [Ecker, Tondl, 2005] this concept was investigated.

Figure 4 shows a sketch of a simple rotor model with parametric stiffness excitation of the bearing mounts and the
associated critical speed map for the rotor without PSE. Dueto bearing instabilities the rotor becomes unstable beyonda
scaled speed of aboutν ∼= 0.8. With harmonic stiffness variation of the bearing mounts atη−

21/1 = ωe
2 − ωe

1 this speed
limit can be increased significantly. Figure 5 (left) is a stability map for various PSE-amplitudes and shows the beneficial
effect of PSE atη ∼= 2.0. The diagram to the right demonstrates how the optimal PSE-frequencyη depends on the bearing
massesmB1,2 as they also determine the dynamic properties (natural frequencies) of the system.

6.4 Rotor with flexible shaft and time-periodic bearing stiffness

The onset of instability can be improved for flexible rotors as well. This has been confirmed by the detailed studies
[Ecker, Pumhössel, Tondl, 2002] and [Ecker, 2005] of a Jeffcott/Laval-rotor with parametric stiffness excitation inside the
bearings. See the sketch of a vertical rotor with elastic shaft and open-loop controlled bearings in Fig. 6. The technology
needed to realize stiffness control is already available. PSE can be achieved by either active magnetic bearings or by
pressure-controlled fluid bearings. Similar to the previous and also to the next example, one can increase the stability
threshold easily by a factor of two, if the necessary amplitude of the PSE can be provided. The bearing arrangement of



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

y z

x

l1

l2

EJ

mR, ue

mB

mB

kB(t) kB(t)

kB(t) kB(t)

0 1 2
0

0.5

1

1.5

2

 0.00 
 0.03 
 0.05 
 0.10 
 0.20 
 0.30 

u
e
  =  

Rotor speed ν
M

ax
. d

is
k 

de
fle

ct
io

n 
m

ax
(|

z r|)

Figure 6. Symmetric flexible rotormR with mass unbalanceue and external non-linear damping. Bearings with time-
periodic stiffness componentk(t). Internal damping of shaftEJ leads to instability of first vibrational mode. Right:
Vibration amplitudes at resonance speed and onset of instability for unbalance parameterue. See [Ecker, 2005] for

system data.

Fig. 6 is only suitable for vertical rotors, since the staticweight of the rotor must not be supported or transmitted by the
time-periodic stiffness element.

Another important issue is rotor unbalance and how it possibly interacts with parametric excitation. In a numerical
study in [Ecker, 2005] this question has been addressed and answered. In Fig. 6 (right) the vibration amplitudes at the
disk station are plotted. As one can easily see, the first resonance speed appears at a scaled rotor speed ofν ∼= 0.8. The
onset of instability is atν ∼= 1.4 due to parametric stiffness excitation. Without PSE the instability region starts at about
ν ∼= 1.0. As the unbalance excitation, which is represented by symbol ue, is increased, no adverse interaction between
forced excitation and parametric excitation is observed. Quite the contrary, the onset of instability moves to higher rotor
speeds as the unbalance eccentricity is increased. This figure and result was not obtained by a stability investigation but
by numerical integration of the non-linear and inhomogeneous set of differential equations of the rotor system.

Let us briefly touch also the question of a time-periodic damping variation, since it might be impossible to completely
separate stiffness and damping properties with certain PSE-devices. In general, only energy-conserving system parameters
may create enhanced damping, if they are changed periodically. According to a recent study [1], however, it seems to be
possible to further increase the damping by additional time-periodic damping parameters.

6.5 Flexible multi-station rotor with local time-periodic stiffness

In the previous examples it was assumed that PSE is introduced at the bearing station of a rotor, either by a special
type of bearing or an open-loop controlled bearing mount. Toincorporate an additional device in a rotor design is quite
difficult, no matter whether the system is open-loop or closed-loop controlled. Consequently, the bearing stations might
not be the best positions for a device to create PSE. Moreover, in other positions there would be the advantage that one
does not have to deal with static loads being transmitted by the PSE device.

Therefore, it is also important to study various positions along the rotor axis as possible and feasible stations for PSE.
Such an investigation is under way, with a simple model in useas depicted in Fig. 7. Note that for reasons of simplicity
this model assumes rigid bearings at both shaft ends and a rather flexible rotor shaft. At station (1) a small lumped mass
is assumed and parametric stiffness excitationk(t) is introduced. Instability of the rotor is caused by internal damping
of the shaft, which leads to a speed threshold atν = 1.25. The stability map on the right hand side demonstrates, that
also such a system can be stabilized atη = ωe

2 − ωe
1 up to twice the original speed threshold and even higher, if large

PSE-amplitudes are permitted.
There are of course PE-frequencies, at which the system is destabilized. In this numerical example, the scaled fre-

quencies in the range between1.5 < η < 2.0 would result in a completely unstable system at any speed. This instability
is caused by the primary parametric resonance for2ωe

1. Note that there is no need to select this dangerous frequency. Also
there is no passing or running through this frequency. Therefore, such PE-resonance frequencies can be avoided easily
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Figure 7. Flexible rotor with PSE-device attached to the rotor shaft at a station along the shaft. Right: Exemplary stability
map with increased rotor stability for PSE-frequencyη ∼= 2.6 and parametric resonance atη = 1.8. Contour lines hold

for increased PSE-amplitudes.

and are not a limiting factor to the basic idea.

6.6 Flexible rotor blade with axial time-periodic forcing
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Figure 8. Cantilever beam with time-periodic tip force oriented to the root of the beam. Top right: Measured signal
of free lateral vibrationy1(t) at the tip of the beam,̃F (t) = 0. Bottom right: Signaly1(t) with time-periodic forcing

F (t) = F0 + F̃ (t) atη = ωe
2 − ωe

1, see [Ecker, Pumhössel, 2009] for details.

The last example to demonstrate beneficial aspects of parametric excitation deals with a cantilever beam, which is
loaded axially by a time-periodic force [Ecker, Dohnal, Springer, 2005]. It is known that the analysis of such a system
leads to equations where the time-periodic force appears inthe stiffness matrix of the system. Therefore, the system isin
fact parametrically excited, although this might not be obvious at first glance.

The sketch in Fig. 8 gives a brief idea, how a string running from the root to the tip of the beam can be used to create a
force that mimics an axial load. By pulling at the lower end ofthe string, the force at the tip can be controlled. This system
has been investigated theoretically [?], but also a test rig was built and measurements were taken. Another experimental
study of a cantilever beam, employing a different type of PSE, is found in [Dohnal, 2008]. For more general experiments
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Figure 9. Experimental setup consisting of mechanical testrig on the left hand side, measurement and control equipment
on the right hand side.

to proof the basic idea of vibration suppression by PSE see [Paradeiser, 2006] and [Schmidt et al. 2007].
In [Ecker, Pumhössel, 2009] one will find a detailed description of the test rig as sketched in Fig. 8 and selected results

from the experiments. Two typical measured time series of first mode vibrations are shown in Fig. 8. The plot on top is
a time series for the beam tip deflectiony1(x = L, t) when no parametric excitation is active. One can see a ratherslow
decay of the vibration amplitudes, which will serve as a reference result. The diagram below shows the same signal, but
with PE activated and operating near the optimal PE-frequency. Although strong beats do appear in the signal it is easy to
recognize that the PE-generated signal exhibits a much faster vibration decay.

It might indeed be too optimistic to think that this idea could be installed in the future in turbo-rotors and may help to
provide more damping to turbine blades. But at least this example demonstrates that it is possible to experimentally verify
the theoretical results and proof the vibration suppression effect. Moreover, it shows that the basic effect can be used
in many different ways and configurations. Also this examplemight serve as a thought-provoking impulse and trigger
further ideas.

7. CONCLUSIONS

Time-periodic parameters in engineering systems, in particular stiffness parameters, can be used to faster suppress
vibrations in a lower mode by energy transfer to a higher and better damped mode. This effect can be achieved if
the frequency of the periodic function to vary the parameteris chosen as the difference between the respective higher
and lower natural frequency of the system. The virtually increased damping parameter of the lower vibration mode is
especially of avail if this mode becomes unstable. Depending on the amplitude of the parameter variation the stability
threshold is raised and the rotor may run stable at higher speeds as before.

There is a number of ways to take advantage of this basic principle in a rotor system. Several of them are outlined in
this paper and the possible benefit is confirmed by either numerical or experimental studies. Further application ideas will
emerge from future work on this topic which may evolve into a key solution for rotor instability in certain cases.
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