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Abstract. For a long time parametric excitation in engineering systemas associated mainly with parametric resonances
and harmful vibrations. Parametric excitation seemed toehanly negative effects on the dynamics of systems and
therefore research was focused on how to avoid or at leashmie the adverse consequences of parametric excitation.
However, recent research results have shown that paramekgitation may cause not only harmful instabilities in a
dynamical system but can also improve the capability of egydo suppress vibrations. In particular it is possible to
avoid the onset of an instability by introducing parametricitation to the system. These findings are quite new and the
numerous possibilities of making use of it still need to h@a®rd and discussed.

In this article the basics of parametric excitation as a meemsuppress vibrations in engineering systems are predent
and several theoretical and experimental studies are vesie The potential of this novel design concept is discussdd
directions for further research and future practical apjaltions are outlined.
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1. INTRODUCTION

If an excitation is applied to a mechanical system it will,general, vibrate. Most of the time these vibrations are
unwanted and require countermeasures if the vibrationiadpk exceed a certain level. Depending on the nature of the
excitation, different strategies and methods of vibratieduction are in use. This contribution focuses on a rather n
idea to reduce, and in some cases even cancel vibrationscimamieal systems by means of parametric excitation.

In mechanical systems different types of excitation arephesl. A frequently encountered type is theéernal excita-
tion, also namedorced excitation Unbalance excitation as known from rotating machinerynis example, the excitation
of a structure which is attached to a vibrating foundatioaristher. Vibration amplitudes are determined by the dynam-
ical properties of the system and the amplitude of excitatim the case of a linear system, vibration amplitudes are
proportional to excitation amplitudes and damping prdpsmf the system. Vibration reduction for the system in gahe
is achieved mainly by either choosing these parameter®ppately or by tuning the system as to avoid resonances.

Although mentioned in first place, the reduction of vibra@aused by external excitation will only play a minor role
in this paper. We will almost exclusively deal with mechahisystems where two other types of excitation mechanisms
are prevailing: Self-Excitation (SE) and Parametric Eatoin (PE). As in most practical cases, self-excitatior b
the source of unwanted vibrations. It will be shown that pagtiic excitation can be employed as a mean to suppress
self-excited vibrations, as well as free vibration.

2. PARAMETRIC EXCITATION - PAST AND PRESENCE

Parametrically excited systems have been of interest sinorg time, and research dates back as far as to the 19th
century, when M.Faraday investigated sloshing liquidsdorgtainer and, about 30 years later, when E.Mathieu estedali
the famous equation given his name. Since then, paramgtitagon (PE) has attracted much interest, mainly becduse
may lead to a unique type of resonances, cglk@metric resonance$iven the available space, itis virtually impossible
to even give a brief overview and just name the importantrdmutions in this field of ongoing active research.

From an application point of view and focussing on mechdmicgineering two different aspects of parametric excita-
tion can be extracted from the numerous references: howoid av reduce the effect of parametric excitation in a system
and how to take advantage of PE, especi@sresonancesThe second aspect is much less popular and not very many ap-
plications of PE in this sense are known. Within this areajdiea prevails, to make use of the large amplitudes whidh wil
occur when a system is operated at a parametric resonanc@skmce, recent works focus on micro-electromechanical
systems (MEMS) as a possible application, see e.g. [Shaly 2084]. However, not all PE-resonances lead to large
amplitudes, since some of them mayrmn-resonantThis special case has not been studied at all, until Tonaidaout
about an interesting phenomenon associated with non-aaesparametric resonances [Tondl, 1998] .

In his paper Tondl shows early results obtained from anadogpriter simulations of an unstable, non-linear, paramet-
rically excited system, see Fig.1. The surprising detahisresult is a frequency interval of the PE, where the egtfited
vibration amplitudes of the system are completely suppbsSince this occurs at the frequency of a parametric reso-
nance, the phenomenon was narpacametric anti-resonance

This pioneering work triggered research efforts at varijplases. It led to a growing number of contributions related
to this phenomenon, only some of them shall be mentioned Reralytical methods and bifurcation analysis have been
applied by Verhulst and his students [Fatimah, 2002], [Ab2@03]. Very comprehensive investigations, both anehfty
and numerically were carried out by [Dohnal, 2005] and thihar [Ecker, 2005]. Parametric excitation of a more gelnera
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Figure 1. Simulation result (obtained with an analog coraputf a self-excited system exhibiting vibration suppi@ss
near the parametric combination resonance frequegey Q2. — ;. From [Tondl, 1998]

type has been applied by Makihara in im Tokio [Makihara,Edkehnal,2005] and valuable contributions have been made
also by Nabergoj from Trieste [Nabergoj,Tondl,2001]. Uast not least, Tondl himself has continued to study the &ffec
of vibration quenching by parametric excitation [Tondl,kiéegoj, Ecker, 2005] and e.g. has also investigated paramet
damping and parametric mass excitation, see [Tondl, 2001].

3. MODELLING SYSTEMS WITH PARAMETRIC STIFFNESS EXCITATION

The generic equations of motion of a mechanical system véitarpetric stiffness excitation can be written in a rather
general matrix form as

Mx + [C+ G(v) + C%(x)] % + [K + N(v) + K?(x)] x + Kpg(t)x = Fex. (1)

The vector of deflections is denoted For a linear, homogeneous system with constant systenicestonly the fol-
lowing matrices would be needed and therefore non-zeros masrixIM, damping matrixC, stiffness matrix. Para-
metric stiffness excitation (PSE) is introduced by makix(t) with time-periodic coefficients according to harmonic
functionscos(wt + p;;). Only single-frequency PSE with frequeneyis considered for this system but multi-location
parametric excitation is not excluded. Phase relationsdest different locations of PE are introduced by phase angle

Dij
Kpg(t) = cos(wt + p;;)PE. 2

The number of degrees of freedom of the system determineszbef the system matrices. It is pretty obvious how to
establish these matrices for simple two or three mass cliaiarss, as used in [Tondl, Nabergoj, Ecker, 2005] and skvera
other references by the author.

Self-excitation can be introduced to the system by settlagients of the damping matri to a negative value.
Negative damping is one of the common methods to represemffdict of flow-induced self-excitation [Blevins, 1977].

Basic non-linear behavior can be represented by the additiffness and damping matric€¥ (x) and K% (x),
which may depend in an arbitrary way on vectoand also, if required, oR.

Matrix G(v) is a function of a system parameterand is needed in mechanical systems to represent gyroscopic
forces, which would depend on a rotational speed\so frequently encountered in rotor systems are non-@masive
forcesN (v)x, created by bearings and seals. Such forces usually ircvatisincreasing rotor speed and may ultimately
destabilize such a system. It is of particular interest t@$tigate rotor system, since the effect of a parametrie ant
resonance could improve the performance of rotating machiquite significantly. Finally, to take into account théeet
of external forcesF.x appears on the right hand side of Eq.(1).

4. PARAMETRIC RESONANCE FREQUENCIES

Itis widely known, see e.g. [Cartmell, 1990], that a systeithywarametric excitation may exhiti#trinciple Paramet-
ric Resonanceat frequencieg”’ andParametric Combination Resonanadrequencieg’, , , for the PSE-frequency
equal to o TR
wequ :

o 20 N (O P
Tim = W Njtk/n = s

(G#k), (J,kyn=1,2,3,..). 3

n
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Symbols2; and(?,, denote thej-th (k-th) natural frequency of the system. The denominatoepresents the order
of the parametric resonance. Most of the time only first ordepnances = 1 of the lowest frequencieQ, 2, are
significant. The effect of a parametric anti-resonance cdy @ccur for parametric combination resonances. It depend
on the system, whether the difference type or the summafjma isnon-resonantind can be used to achieve vibration
suppression. It can be shown that for a symmetric stiffnemsixi = K’ parametric vibration suppression will occur
for the difference-type combination resonange |, = (©,; — Q) and that an interval of instability will be observed
at the summation-type combination resonange, ) , = (€2; + Qx).

To predict the appropriate PE-frequency for vibration seppion it is necessary to know the natural frequencies of
the system. Therefore, the lower undamped natural frege®€) 2 5 .. have to be calculated from system Eq.(1) by
solving the eigenvalue problem fadx + Kx = 0.

5. ANALYSIS OF SYSTEMS WITH PARAMETRIC EXCITATION

In its most general version Eq.(1) defines a set of non-homames, non-linear, time-periodic differential equatiohs
second order. Also because of its basically unlimited cexipt with regard to the size of the system there does not exis
a single method to suit all kind of problems. Depending orettteial size of the problem, the presence of non-linearities
and inhomogeneous terms, different methods are advantagedbe applied. Another factor is also if time series of
system states of the original problem are sought or if ordydical stability of such a solution is of interest.

5.1 Numerical simulation method

The most direct method, which can be applied to virtually king of such problems is numerical simulation. By inte-
grating the system equations in the time domain, startioigp finitial conditions, the solution is computed. Nonlingas
and large matrices only affect the computational speedybutd not prevent using simulation. Of course, appropiiiate
tegration methods have to be applied, to balance compuogtdfort and accuracy. Nevertheless, CPU-time may become
still a problem, when the stability of a system near the $itglthreshold shall be investigated and very slowly chaggi
transients have to be followed.

5.2 Analytical methods

A number of analytical and semi-analytical methods haven lieeloped to deal with time-periodic systems. Even
trying to briefly introduce the most interesting ones wowde=d the length of this overview by far. Therefore, only one
method is explicitly mentioned, since it has been used guiteessfully in this context. This method is nowadays mnjostl
calledMethod of AveragingMoA). However, based on being promoted by Krylov, Bogotiutand Mitropolski, in the
past the method is also associated with these names. A deteled comparison of three distinctively different nuzth
is presented in [Ecker, 2005].

The Method of Averaging is applicable to a linear(ized) anthbgeneous subset of Eq.(1) and will primarily provide
information about the stability of the system. It can be iempénted as a first order method, as well as for higher orders.
However, deriving a first order solution can be already cusdrae for a low-dimensional system. This, and the need
to identify a small parameter in the system, are the majad¥iantages of this method. But to be fair, a price has to
be paid with practically every of the analytical methods. éywrecent and detailed presentation of MoA is found in
[Verhulst, 2006]. The application to PE-systems of varicomplexity is thoroughly discussed in [Dohnal, 2005].

The advantages of analytical methods can be seen easilyebfpltbwing example. Equations (3) and (4) are a
simplified and normalized version of Eq.(1), which have based by Tondl and others to investigate the stability of
PE-excited two-degree of freedom systems.

u” + Q%u = —¢ (Ou’ + cosnTQu), (4)
uy ©11 O12
= @ =
“ {W]’ {@21 922]’
, )]
[9) 0 Qc Qc :|
02 — 1 . Qo= 1 @i |
{ 0 9 } ? { Q1 Q5

By application of the Method of Averaging two necessary dtiowas are obtained for stability at a parametric excitatio
frequencyn = (Q2 — Q1 ):

O11+69 > 0, (6)

1 C C
@11622 + m 12@21 > 0. (7)
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Not only the stability of the system can be examined for aaiePE-frequency. It is also possible to calculate the
frequency interval of stability in the vicinity of this fregncy. The interval is defined as

No + €010 <M < Mo + ETR;- (8)
with

©)

Olo,hi = F

(@11+922)\/ Q@5
2 40212201109

Itis interesting to note that first order averaging leadsactly the same results as obtained in (Tondl, 1998) by armdifft
method based on Floquet theory.

In exchange for compact results, one has to accept thatamcisrdegraded as soon as the parameterl cannot be
considered as small anymore, at least if only a first ordercqmation is used.

5.3 Numerical stability analysis

The stability of the trivial solutiork = 0 of system Eq.(4),(5) can be investigated also numericallynieans of
Floguet-theory, see [Verhulst, 2006]. Floquet's theorarstplates that for a system of first order differential eurest

y= A(t) Yy, A(t) = A(t + T)a (10)
with aT-periodic matrixA.(¢) each fundamental matrixI(¢) of the system can be represented as a product of two factors
M(t) = Q(t) exp(tC), (11)

whereQ(t) is aT-periodic matrix function ane is a constant matrix.

Stability of the time-periodic system can be determinedegifrom the eigenvalues of tHdoquet exponent matrix
C or from themonodromy matriXM(T"), which is in fact the state transition matrix evaluated rafteperiodT’. The
monodromy matrix can be calculated numerically by repeatezration of the system equations over one pefipd
starting from independent sets of initial conditions. It@venient to use the columns of the identity malris initial
vectors to start from. By solving initial value problems over one peridd

and by arranging the results as follows
M(T) = [y(T)1,¥(T)2; -, y(T)n] (13)

the monodromy matrix is obtained. Finally the eigenvalugs® monodromy matrix
A = eig(M(T)), (14)
are calculated numerically. The system is unstable if anp@kigenvalues are larger than one in magnitude

< 1 stable system

> 1 unstable system (15)

ma(|As . Az, s [ ]) {

This procedure leads to a very efficient numerical methodchvlllows to examine the stability of a parametrically
excited system much faster than with direct numerical irstiégn. This method, however, cannot be used when nonlin-
earities are present and will not give vibration amplitudes

6. EXAMPLES

In this section several examples of mechanical systemspgitametric excitation are presented, to demonstrate the
capabilities of the proposed method. Due to limited spagealthe details for every model can be included and theeefo
references are given where to find the full documentatioeémh example.

6.1 Two-mass system

In Figure 2 a schematic is shown of a two-mass system withtiffreess element being periodically changed according
to ko1 (t) = ko1(1 + ey cos(wt). Itis assumed that the damping elemegit < 0 and therefore the system may exhibit
self-excited vibrations. To demonstrate the stabilizifigat of parametric excitation, the system was investigéte the
critical value of parametety, at the stability threshold. In Fig. 3 the stable area is fillddte and the unstable area is
grey. This result was obtained by a numerical stability ysial One can see easily that significantly lower values ®f th
critical parameterg, are possible at the combination resonance frequency of/#tera{2, — ;. This indicates that PE
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Figure 2. Two-mass system with self-excitation becausesgétive dampingy, < 0 and parametric stiffness excitation
atko: (t)

at this frequency and with a sufficiently high amplitude wailow for an increase of the self-excitation parameter auith
becoming unstable. If the wrong frequency is chosen, horvdven the effect is turned upside down, as one can see from
the result in the vicinity of the parametric combinationaeance of the summation type.

The stability threshold, separating stable and unstalgiems, is also plotted as a broken line, near the parametric
resonances. These two lines have been obtained by anbfgticailas for the interval of stability, similar to Eqgs.(&hd
(9). Note that also the interval of instability ne@g + 25 can be obtained with rather high accuracy, compared to the
numerical solution. The full set of data for this example barfound in [Ecker, 2005].
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Figure 3. Typical stability map for a system as shown in Fighhite areas indicate a stable system, grey areas insyabilit
due to self-excitation. Stability threshold is calculatednerically (solid line) and by analytic formulas (brokémeks).

6.2 Vibration suppression by PE in rotor systems

In this section numerical studies and also one experimestuidy will be reviewed and discussed, that demonstrate
how parametric excitation could be employed in a rotor syste enhance it's performance. At present these design
concepts may seem to be futuristic and not readily appkceih real world machine. Since this is a well known scenario
for an emerging new technology, it is likely worth the timedeeffort to investigate and explore the benign aspects of
parametric excitation.

All the following studies have two facts in common which wenqaut in front of this discussion. (1) Parametric
excitation is introduced bgpen-loop controbf a system parameter. (2) Threquencyof the harmonic parameter variation
where thebest performance achieved will be near the difference type of tmnbination resonance frequen@z/1 =
w§ — wy.

Note that the available space does not allow to fully docurtreamodels and parameters used in the examples below.
The reader is referred to the references where the modeéxpl@ned comprehensively and details are listed.

6.3 Rigid rotor and time-periodic bearing mounts

There is a multitude of rotor systems, where the rotor carobsidered as a rigid body and the flexibility of the system
is located within the rotor bearings and the bearing moufdpecially air-bearings, but also fluid-film bearings carate
destabilizing forces at high rotor speeds and the rotor negpime unstable beyond a speed threshold. By introducing a
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Figure 4. Rigid rotorm g, 0z supported by flexible bearing mounts with time-periodiffrstiss componerit(¢). Bearing
parameters g, cp lead to instability of first vibrational mode beyond statyilihresholdr = 0.8, see speed map to the
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Figure 5. Stability charts for rotor system with PSE of be@nnounts. Left: Increase of stability thresholdyat 2.0

for different levels of PSE amplitude (0, 20, 40, 60%#gqf,,). Right: Change of optimal PSE-frequency and stability

interval as a function of bearing masses due to change ofaldtaquencies. See [Ecker, Tondl, 2004] for details and
system data.

time-varying stiffness of the bearing support the systeoobes parametrically excited and can benefit from an ineckas
stability limit. In first studies [Ecker, Tondl, 2004] anddker, Tondl, 2005] this concept was investigated.

Figure 4 shows a sketch of a simple rotor model with paramstiifness excitation of the bearing mounts and the
associated critical speed map for the rotor without PSE. tDuxearing instabilities the rotor becomes unstable beyond
scaled speed of about= 0.8. With harmonic stiffness variation of the bearing mountgat, = w5 — wf this speed
limit can be increased significantly. Figure 5 (left) is adity map for various PSE-amplitudes and shows the beradfici
effect of PSE at) = 2.0. The diagram to the right demonstrates how the optimal R&GEncy) depends on the bearing
massesn g1 2 as they also determine the dynamic properties (naturaliénecjes) of the system.

6.4 Rotor with flexible shaft and time-periodic bearing stifness

The onset of instability can be improved for flexible rotossveell. This has been confirmed by the detailed studies
[Ecker, Pumhdssel, Tondl, 2002] and [Ecker, 2005] of a d¢tfficaval-rotor with parametric stiffness excitationios the
bearings. See the sketch of a vertical rotor with elastiét strel open-loop controlled bearings in Fig. 6. The techgglo
needed to realize stiffness control is already availabISE Ban be achieved by either active magnetic bearings or by
pressure-controlled fluid bearings. Similar to the pregiand also to the next example, one can increase the stability
threshold easily by a factor of two, if the necessary amgéitaf the PSE can be provided. The bearing arrangement of
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Figure 6. Symmetric flexible rotatz with mass unbalance. and external non-linear damping. Bearings with time-
periodic stiffness componeif(t). Internal damping of shafl.J leads to instability of first vibrational mode. Right:
Vibration amplitudes at resonance speed and onset of ifigtdbr unbalance parameter.. See [Ecker, 2005] for
system data.

Fig. 6 is only suitable for vertical rotors, since the statigight of the rotor must not be supported or transmitted ley th
time-periodic stiffness element.

Another important issue is rotor unbalance and how it pdgéitberacts with parametric excitation. In a numerical
study in [Ecker, 2005] this question has been addressedrswieaed. In Fig. 6 (right) the vibration amplitudes at the
disk station are plotted. As one can easily see, the firsheeste speed appears at a scaled rotor speed=060.8. The
onset of instability is at = 1.4 due to parametric stiffness excitation. Without PSE théalnitity region starts at about
v 2 1.0. As the unbalance excitation, which is represented by symhds increased, no adverse interaction between
forced excitation and parametric excitation is observegite€the contrary, the onset of instability moves to higtwtor
speeds as the unbalance eccentricity is increased. Thie figud result was not obtained by a stability investigatioh b
by numerical integration of the non-linear and inhomogeiseset of differential equations of the rotor system.

Let us briefly touch also the question of a time-periodic dagpariation, since it might be impossible to completely
separate stiffness and damping properties with certaind®@siees. In general, only energy-conserving system patens
may create enhanced damping, if they are changed peribydidakording to a recent study [1], however, it seems to be
possible to further increase the damping by additional4o@egodic damping parameters.

6.5 Flexible multi-station rotor with local time-periodic stiffness

In the previous examples it was assumed that PSE is intradaicthe bearing station of a rotor, either by a special
type of bearing or an open-loop controlled bearing mountin€orporate an additional device in a rotor design is quite
difficult, no matter whether the system is open-loop or dele®p controlled. Consequently, the bearing stationshinig
not be the best positions for a device to create PSE. Morgimvether positions there would be the advantage that one
does not have to deal with static loads being transmittedh&PSE device.

Therefore, it is also important to study various positiolemg the rotor axis as possible and feasible stations for. PSE
Such an investigation is under way, with a simple model inasdepicted in Fig. 7. Note that for reasons of simplicity
this model assumes rigid bearings at both shaft ends antier fégxible rotor shaft. At station (1) a small lumped mass
is assumed and parametric stiffness excitatir) is introduced. Instability of the rotor is caused by intémi@mping
of the shaft, which leads to a speed threshold at 1.25. The stability map on the right hand side demonstrates, that
also such a system can be stabilized)at w§ — w§ up to twice the original speed threshold and even higheargd
PSE-amplitudes are permitted.

There are of course PE-frequencies, at which the systenstaluibzed. In this numerical example, the scaled fre-
guencies in the range between < n < 2.0 would result in a completely unstable system at any speeid. ifi$tability
is caused by the primary parametric resonance@dgr Note that there is no need to select this dangerous freguaisn
there is no passing or running through this frequency. Thezesuch PE-resonance frequencies can be avoided easily
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Figure 7. Flexible rotor with PSE-device attached to therrshaft at a station along the shaft. Right: Exemplary Btabi
map with increased rotor stability for PSE-frequemc$ 2.6 and parametric resonancesat= 1.8. Contour lines hold
for increased PSE-amplitudes.

and are not a limiting factor to the basic idea.

6.6 Flexible rotor blade with axial time-periodic forcing

Az
-3
x 10
Y1 (Lv t)‘ P — 1
A [ S
>
) =
y(mv t) et g O
> - 3]
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A ©
F,(t) &) L
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Figure 8. Cantilever beam with time-periodic tip force oted to the root of the beam. Top right: Measured signal
of free lateral vibrationy; (¢) at the tip of the beamf’(¢) = 0. Bottom right: Signaly; (¢) with time-periodic forcing
F(t) = Fo + F(t) atn = w§ — w§, see [Ecker, Pumhdssel, 2009] for details.

The last example to demonstrate beneficial aspects of paiaregcitation deals with a cantilever beam, which is
loaded axially by a time-periodic force [Ecker, Dohnal, i8ger, 2005]. It is known that the analysis of such a system
leads to equations where the time-periodic force appedteistiffness matrix of the system. Therefore, the systam is
fact parametrically excited, although this might not beiobs at first glance.

The sketch in Fig. 8 gives a brief idea, how a string runningifthe root to the tip of the beam can be used to create a
force that mimics an axial load. By pulling at the lower endtaf string, the force at the tip can be controlled. This syste
has been investigated theoreticalf},[but also a test rig was built and measurements were takeath&r experimental
study of a cantilever beam, employing a different type of ASEound in [Dohnal, 2008]. For more general experiments
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Figure 9. Experimental setup consisting of mechanicalrtgsin the left hand side, measurement and control equipment
on the right hand side.

to proof the basic idea of vibration suppression by PSE sa@ffeiser, 2006] and [Schmidt et al. 2007].

In [Ecker, Pumh@ssel, 2009] one will find a detailed desimiptf the test rig as sketched in Fig. 8 and selected results
from the experiments. Two typical measured time series sff firode vibrations are shown in Fig. 8. The plot on top is
a time series for the beam tip deflectipn(x = L, ¢) when no parametric excitation is active. One can see a raler
decay of the vibration amplitudes, which will serve as anerfee result. The diagram below shows the same signal, but
with PE activated and operating near the optimal PE-frequeilithough strong beats do appear in the signal it is easy to
recognize that the PE-generated signal exhibits a mucérfaisiration decay.

It might indeed be too optimistic to think that this idea abbk installed in the future in turbo-rotors and may help to
provide more damping to turbine blades. But at least thisgta demonstrates that it is possible to experimentallifyer
the theoretical results and proof the vibration suppressffect. Moreover, it shows that the basic effect can be used
in many different ways and configurations. Also this examplght serve as a thought-provoking impulse and trigger
further ideas.

7. CONCLUSIONS

Time-periodic parameters in engineering systems, in @dar stiffness parameters, can be used to faster suppress
vibrations in a lower mode by energy transfer to a higher agitieb damped mode. This effect can be achieved if
the frequency of the periodic function to vary the parametethosen as the difference between the respective higher
and lower natural frequency of the system. The virtuallyéased damping parameter of the lower vibration mode is
especially of avail if this mode becomes unstable. Depandimthe amplitude of the parameter variation the stability
threshold is raised and the rotor may run stable at highexdspas before.

There is a number of ways to take advantage of this basiciphin a rotor system. Several of them are outlined in
this paper and the possible benefit is confirmed by either noal®r experimental studies. Further application idedls w
emerge from future work on this topic which may evolve intaeg kolution for rotor instability in certain cases.
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