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Abstract. In this work, approximated analytical solutions, which include short periodic terms, are presented for three
different problems involving optimal low-thrust limited-power transfers between elliptical orbits in a Newtonian
central gravity field. These problems are classified as: transfers between coplanar orbits, transfers between non-
coplanar coaxial orbits and transfers between non-coplanar co-parameters orbits. The optimization problem
associated to the general space transfer problem is formulated as a Mayer problem of optimal control theory with
Cartesian elements — position and velocity vectors — as state variables. After applying the Pontryagin Maximum
Principle, classical orbital elements are introduced through a canonical transformation. Short periodic terms are
eliminated from the maximum Hamiltonian function through an infinitesimal canonical transformation. The new
Hamiltonian function, resulting from the infinitesimal canonical transformation, describes the extremal trajectories
associated with the long duration maneuvers for simple transfers (no rendez-vous). This new Hamiltonian function can
be simplified for the three special classes of maneuvers described above and closed-form analytical solutions can be
obtained through Hamilton-Jacobi theory.
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1. INTRODUCTION

In this work, approximated analytical solutions, which include short periodic terms, are presented for three different
problems involving optimal low-thrust limited-power transfers between elliptical orbits in a Newtonian central gravity
field. These problems are classified as: transfers between coplanar orbits, transfers between non-coplanar coaxial orbits
and transfers between non-coplanar co-parameters orbits. This analysis has been motivated by the renewed interest in
the use of low-thrust propulsion systems in space missions in the last twenty years. Two important space missions have
made use of low-thrust propulsion systems: NASA-JPL Deep Space One and ESA-SMARTL. Low-thrust electric
propulsion systems are characterized by high specific impulse and low-thrust capability and have their greatest benefits
for high-energy planetary missions (Marec, 1979; Racca, 2003). Several researchers have obtained numerical and
analytical solutions for a number of specific initial orbits and specific thrust profiles (Edelbaum, 1964, 1965; Marec and
Vinh, 1977; Haissig et al, 1992; Kiforenko et al, 2003).

The optimization problem associated to the general space transfer problem is formulated as a Mayer problem of
optimal control theory with Cartesian elements — position and velocity vectors — as state variables. It is assumed that the
thrust direction is free and the thrust magnitude is unbounded, that is, there exist no constraints on control variables
(Marec, 1979, 1984). After applying the Pontryagin Maximum Principle and determining the maximum Hamiltonian
function, classical orbital elements are introduced through a canonical transformation — Mathieu transformation —
defined by the general solution of the canonical system described by the integrable kernel of the maximum Hamiltonian
function. Hori method (Hori, 1966) — a perturbation technique based on Lie series — is applied in solving the canonical
system of differential equations that governs the optimal trajectories. Short periodic terms are then eliminated from the
maximum Hamiltonian function through an infinitesimal canonical transformation described by a generating function
obtained at first order in the thrust magnitude. The new Hamiltonian function, resulting from the infinitesimal canonical
transformation, describes the extremal trajectories associated with the long duration maneuvers for simple transfers (no
rendez-vous). This new Hamiltonian function can be simplified for the three special classes of maneuvers described
above and closed-form analytical solutions can be obtained through Hamilton-Jacobi theory. The separation of variables
technique (Lanczos, 1971) is applied to solve the Hamilton-Jacobi equation associated to the average canonical system.
First order analytical solutions are then obtained in each case by using the generating function built through Hori
method.

2. OPTIMAL SPACE TRAJECTORIES

A low-thrust limited-power propulsion system, or LP system, is characterized by low-thrust acceleration level and
high specific impulse (Marec, 1979, 1984). The ratio between the maximum thrust acceleration and the gravity
acceleration on the ground, 7,.../9, , is between 10~ and 107, For such system, the fuel consumption is described by

the variable J defined as
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where yis the magnitude of the thrust acceleration vector y , used as control variable. The consumption variable J is a
monotonic decreasing function of the mass m of space vehicle,

1 1
J=Pma{5‘m—)
0

where Ppa is the maximum power and m, is the initial mass. The minimization of the final value of the fuel
consumption J; is equivalent to the maximization of m, .

The general optimization problem concerned with low-thrust limited-power transfers (no rendezvous) will be
formulated as a Mayer problem of optimal control by using Cartesian elements as state variables. Consider the motion
of a space vehicle M powered by a limited-power engine in a Newtonian central gravity field. At time t, the state of the
vehicle is defined by the position vector r(t) , the velocity vector v(t) and the consumption variable J. The control y is

unconstrained, that is, the thrust direction is free and the thrust magnitude is unbounded.
The optimization problem is formulated as follows: it is proposed to transfer the space vehicle M from the initial
state (r,,v,,0) atthe initial time t, =0 to the final state (r,,v,,J,) atthe specified final time t,, such that the final

consumption variable J; is a minimum. The state equations are
dr dv u d 1,
— =y —_—=——r+ _— = f 2
dt TR it 27 @

where g is the gravitational parameter.
According to the Pontryagin Maximum Principle (Pontryagin et al, 1962), the optimal thrust acceleration y”~ must

be selected from the admissible controls such that the Hamiltonian function H reaches its maximum. The Hamiltonian
function is formed using Eq. (2),

1
H=p, ev+p, o[—r%r+y)+§pjy2, 3)

where p.,p, and p, are the adjoint variables and dot denotes the dot product. Since the optimization problem is

unconstrained, y~ is given by

y =-fr. (4
P,

The optimal thrust acceleration " is modulated (Marec, 1979) and the optimal trajectories are governed by the
maximum Hamiltonian function H ", obtained from Eqns (3) and (4),

£ p°
H =p,ev—p,er——— ®)

r3 2p;
The consumption variable J is ignorable and p; is a first integral. From the transversality conditions, p; (tf ): -1;
thus, p, (t)=—1. Equation (5) reduces to

2

p
H:prov—pv-%r+ — (6)
r 2
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Using Eqns (6) and (7), the maximum Hamiltonian function can be written in the form H™ = H  + H,., where
2

Ho=p, ev-p, -%r denotes the undisturbed Hamiltonian function and H . :pTV denotes the disturbing function
r

concerning the optimal thrust acceleration.

3. TRANSFORMATION FROM CARTESIAN ELEMENTS TO A SET OF ORBITAL ELEMENTS

Consider the canonical system of differential equations governed by the undisturbed Hamiltonian function H,,

dr dv 7 dp, wu dp

—_— —_——— —r = — —_ 3 o v = — , 7
il i i (p,—3(p, ee, e,) e U
where e, is the unit vector pointing radially outward of the moving frame of reference (Fig. 1). The general solution of

the state equations is well-known in Astrodynamics (Battin, 1987) and the general solution of the adjoint equations is
obtained through properties of generalized canonical systems (da Silva Fernandes, 1994). Thus,

2
_abe) ©
1+ecos f
v= | llesin f)e, +@+ecos f)e,], 9)
afl—e

a rsin f 1—e3cosE sin f e +cos f
D, =—2{2apa+((1—e2)cosE)pe+(g) (pw—( )pM)}er+{ pe—( * )

r e J1-¢? a ae(l-e?) ' “
/ _ a2
+1e—cosf Pu }eﬁ;{ijsin E{pI COSa)+( _pQ - pwcotljsina)} (10)
ae T oaw1-e? |\r sinl
+\/1—e2(3jcosE[p, sina)—( _pQI - pwcotljcosw}}ew,
r sin

p= nav1—e? 1+ecosf
2\
+{2a(1—e2{%jpa + (1—e2Xcos f +cosE)p, + (1—e )sm f (1+ ! J( p, —Vv1-€’p,, j}es (11)

12
! {{Zaesin fp,+ ((l—ez)sin f)pe - (1_62)(:05 f p, + (1_6:)3 (cos f LJpM }e,

e 1+ecos f

+{(chos(a)+ f)p, +(L]sin(a)+ f)( _pQ - p, cot Ij}ew.
a a sinl

where e, and e, are unit vectors along circumferential and normal directions of the moving frame of reference,

respectively (Fig. 1); a is the semi-major axis, e is the eccentricity, | is the inclination of orbital plane, Q is the
longitude of the ascending node, @ is the argument of pericenter, f is the true anomaly, E is the eccentric anomaly, M

is the mean anomaly, n=+/x/a* is the mean motion, and (r/a), (r/a)sin f , ... etc are functions of the elliptic motion

which can be expressed explicitly in terms of the eccentricity and the mean anomaly through Lagrange series (Battin,
1987). The anomalies are related through the equations:

tan i = 1/1+—e tanE : (12)
2 1-e 2

M =E —esinE. (13)

The unit vectors e, , e, and e, of the moving frame of reference are written in the fixed frame of reference as
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=(cosQcos(w + f) —sinQsin(w+ f)cosl)
(sinQcos(ew + f) +cosQsin(w + f)cosl)j+sin(w+ f)sin | k

e, =—(cosQsin(w + f)+sinQcos(w+ f)cosl)
(~sinQsin(ew + f)+cosQcos(w + f)cosl)j+cos(w + f)sin | k

e, =sinQsinli—-cosQsinl j+cosl k

Q 5
Line of nodes

Figure 1 — Frames of reference.

Equations (8) — (11) define a Mathieu transformation between the Cartesian elements (r v, D, pv) and the orbital
ones (a,e,1,Q,@,M,p,, P, P> Pa: P, Py ). The Hamiltonian function is invariant with respect to this canonical
transformation, thus

(14)

Ho =NPy ,
2) }
P. P,

« 1 1
H = =
7" on%a?fl—e?)| 2

+4(1 e)3 Smf(l+ecosf
B

e’ 1+ecosf

+4a(1 ez)z(%)(cosE+cosf)pape+(1—e2)z(cosE+cosf) P,

dall-¢’f (a)_.
¥ (—jsmf(ﬂmﬁpapm 1- e)L papM]

e r
_ a2
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(l—ez) 1 © (Y 2 p 2
1+ sinf[pw—\ll—esz] +—[—) P, +( o —pwcotlj
e 1+ecosf 2\a sinl
P —pwcotl) .
(15)

e
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2\a sinl a sinl
The new Hamiltonian function describes the optimal low-thrust limited-power trajectories in a Newtonian central

gravity field. Note that new Hamiltonian function becomes singular for circular and/or equatorial orbits

{ @ cost)[Zaepa+(1—e2)pe]2+21 e? sm2f{ ap,p, —
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4. AVERAGED MAXIMUM HAMILTONIAN FOR OPTIMAL TRANSFERS

In order to eliminate the short periodic terms from the maximum Hamiltonian function H™, Hori method (Hori,
1966) is applied. It is assumed that H, is of zero order and H is of the first order in a small parameter defined by the

magnitude of the thrust acceleration.
Consider an infinitesimal canonical transformation,

(@el,Q0,M,p,, PP\ Pas P, Pu)— (@€, 1,Q,0' M, pL, pL, P, Py P,y Piv )-
The new variables are designated by the prime. According to the algorithm of Hori method, at order 0, one finds
F,=n'py .

F, denotes the new undisturbed Hamiltonian. Now, consider the canonical system described by F,:

da’_ de’ 4 a’_, @’ do’_, '
dt dt dt dt dt dt

and,
dp, :En_ pi dﬁ_ dﬂ:o _dpﬂ =0 dp,, =0 _dpM =0,
d 2a’ dt dt dt dt dt

general solution of which is given by

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
a'=a, e'=ej 1"=1; Q'=Q; o' = o} M’ =M} +n't-t,)

,(t_to) '

’ ’ 3 n ! r r ! ! ! ’ ’ ’ ’
Pa = pao +E a’ Pm Pe = peo p, = p|0 Po = pQO P, = p(oo Pm = pMO J

The subscript 0 denotes the constants of integration.
This general solution is introduced into the equation of order 1 of the algorithm of Hori method and the mean value
of Hy* must be calculated from the resulting equation. S, is obtained through integration of the remaining part. F, and

S, are then given by the following equations:

F = %{43@ P2+ g(l— erz)péz + (5 ;:S'z) pLy+ 2(1@;2){(“ ge'zj + ge’z cos 2@’}

4 56'2 Sln 260’ py pg’1 —CO'[ I! pr + 1 p;} —COt Iv pr 2 1+§erZ _EerZ 005260’
2(1—e'2) "Usinl’ ° ] oh—e?)\sin1’ @ 2 2 '
1 [a”® 8yl-e'?

S, == —{Be’sin E'a'?p.? +8(1—e’2)sin E'a’p,p, ——————CosE'p,p,,
e

(16)

2\ 4

1_ev2
'

+(1—e’2{—%e’sin E’+%sin 2E’—%e’sin 3E} Pt + Ee’cos E’—%(S—e’z)cosZE’+%e’cosSE’} pLp.,

) 2

A 12 pQ ' ' ’ 3 13 | i ’ 3 12 i ’ 1 13 i ' 2 Y2 2 '

+1ll-e P+ = I,—pwcotl —-e +§e sinE +§e sin2E —ze sin3E" |+[L-e p;° cos2w
sin
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sinl’ sinl’ 4
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Terms factored by py, have been omitted in equations above, since only transfers (no rendez-vous) are considered.

5. SPECIAL CLASSES OF MANEUVERS

In this section, complete first order solutions for three special classes of maneuvers — transfers between coplanar
orbits, transfers between non-coplanar coaxial orbits and transfers between non-coplanar co-parameters orbits — are
presented. These maneuvers correspond to integrable canonical systems described by F’ = F, + F,, whose solutions are

obtained by applying Hamilton-Jacobi theory.
5.1 Transfers between coplanar orbits

For transfers between coplanar orbits F, and S, simplify and are given by:

’

a 12 12 5 12 12 5—48’2 12
F=—J4a2p? +2[1-e + , 18
1 2/1 { pa 2 ( )pe 28,2 pa) ( )

1 [a®] . (e}
S, =5 " 8e'sinE’'a’’ p.’ +8(1—e’2)sm E'a'p.p. —STCOS E'a’p.p,

+(1—e'2 D ersin E'+sin 26/~ ¢’sin 3E’ p.?
4 4 12

2f-e? )"
e

(2 e lersiner— L[ 2 e |sin2e + L esin3E’ pZt.
e'? |\ 4 2\ 2 12

The general solution of the canonical system described by the new average Hamiltonian function is obtained
through two canonical transformations as described in da Silva Fernandes and Carvalho (2008). First, consider the

Mathieu transformation, (a’,e’,a;’, PL, Pes P, )—> (a",¢,w", Pas Pys p;;), defined by the following equations:

@

(19)

5 1/,, 1
+ —e'cosE'+=(e'"* —3)cos2E’'+—e'cos3E’ |p. p’
E 1 -aoos2"s - ercosa

Pa = P2 e’ =sing¢ Pe=—" o' =" Po =P, (20)
The Hamiltonian function F' is invariant with respect to this transformation. Thus,

" a” n2 n2 5 "2 5 2 "2
F"=—374a +— +|—cCsc” ¢p—2 . 21
Now, consider the canonical transformation, (a’,4,”, p!, Py P )L(Cl,CZ,E, Pe,r P, » pE), defined by a

generating function W such that the constants C,, C, and E become the new generalized coordinates. These constants
are defined by

p" =C, p; + pu’csc’ ¢=C; a 4a”2p§2+E py?+ Ecscz¢—2 pr2l=E.
24 2 2
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Constant E should not be confused with the eccentric anomaly E. By applying the separation of variables technique for
solving the Hamilton-Jacobi equation (Lanczos, 1971), one gets:

w@" ¢,0"C,,C, E) =W, @"C,,C, E)+W,(4C,C, E)+W, (0" C,,C,,E),

, 5C° | | 44E o | AuE "
with w1=—1/ 5 {,fsc'ia"—l—tan1‘/50;261”—1},W2:J‘,/CZZ—CfCSCZ¢d¢,W3:Cla) and 5C; —4C} =5C?.

After some calculations (details can be found in da Silva Fernandes and Carvalho, 2008), one finds the solution of
the canonical system governed by the Hamiltonian F" for a given set of initial conditions:

a, . .
a'(t) = 0 a"sin’k, =a/ smz(ﬁyﬂrko) (//:é(r—z'o W1+ 4cos®k,

4a; (1 o
+°[2Et2—aO P J

U
) a 4 .
cos ¢ = cosk, cos 7 ®"=k, +tan (tanrcsckl)—grsm K,
an 3 a 1
o1 z[ ) pI2 4= PZ§(5CSC K, _4{a”03 - a”zj p? = p’?(csc? k, — csc? ¢) Po = Pay s (22)

with the auxiliary constants k,, k, and k, defined as functions of the initial value of the adjoint variables by

"oA" "”2 2 "n2 2
8la 5csc” k, —4 + csc
o Opaf’) P ( ),csc2 k, = P pa,:z L K, :wg+%ro sink, —tan*(tan 7, csck, ).

pm (SCsc k, - ) Poy

csc’ k, =
The constants C, C,, C, and E can also be written as functions of the initial value of the adjoint variables:
—pmO (SCsc k, —4), C,=pl ., C;=pj +p.csc’ g, 4,uE:a0( (agpgo) + P, (5csc k, — ))

The initial conditions are a"(0)=a;, "(0) =sin g, and »"(0)=w{, and, z, is obtained from cos ¢, = cosk, cosz, .
Following Hori method (Hori, 1966) and applying the initial conditions, one finds:

5 2 W2 E
a(t)=a'(t)+ %[8e'5in E'a’?p. + 4(1— e'z)sin E'alp, -4 (1_ 2, cosE'ap), ] , (23)
E

/ [41 e smE’a’p;i (— {—%e'sinE’+%sin2E'—%e’sin3E'}pg

. E (24)
+MFe cosE’ +£( —S)COSZE +ie’cos3E’}p;} ,
e’ 4 4 12
Eo
72 2 2 /2
C()(t) - a_3|: —LCOS E’a'p' +M|:;B,COS E’—i—%(elz —S)COSZE,-F %QICOSSE,} p;
\/ e
(25)

.
+i2 3¢ lesing'— L3 _¢2 |sin2e + L ersinaE’ [
e?|l4 202 12 y
0

with a’, €', ..., p. given through Egs (20) and (22). These equations become singular for circular orbits. The

eccentric anomaly E' is computed from Kepler’s equation with the mean anomaly M’ given by
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, , t 5+2¢?) [a® V1-e?
M(t)zM(to)+J‘t0[‘/%—[ 5 }/7 -7 pw}dt-

5.2 Transfers between non-coplanar coaxial orbits

For transfers between non-coplanar coaxial orbits F, and S; simplify and are given by:

a’ 5 1+ 4e”?
F - 4a!2 /2+_1_e/2 /2+ 12 ’ 26
1 2#{ pa 2( )pe 21_e,2 pl ( )

1 /a’s . . 5, . 3. 1, .
S, == |=—i8e'sinE'a”p? +8(1—e?)sinE'a’p’ p. +(1—e?]| —=¢'sinE' + =sin2E' — —¢'sin 3E’ |p?
1 2 ,U3 {8 pa ( ) pa pe ( 4 4 12 pe

+<1—e’2)_lp;2 e et fsine +[ L+ Lo |sin2e — Lersinaer |l
4 4 2 12

Consider the Mathieu transformation defined by Eq. (20) with p; replacing p, . The Hamiltonian function F' is
invariant with respect to this transformation and it is given by

(27)

" a’ n2 n2 5 n?2 1 2 "2
F'=—14a +=pr*+=({1+5tan . 28
2ﬂ{ i+ py’ 1+ Stan” g } 28)

Now, consider the canonical transformation, (a”,qj, 1", 05, P, p;’)L)(Cl,CZ,E, P, Pe, pE), defined by a
generating function W such that the constants C,, C, and E become the new generalized coordinates. These constants
are defined by

p;+p/*tan® g =C’ pl=C, & Jaarzp? 2 Py +1(1+ Stanzqﬁ)p,”2 =E.
2 2 2
By applying the separation of variables technique for solving the Hamilton-Jacobi equation (Lanczos, 1971), one gets:
w("¢,1"C;,Cy,E)=W,(@",Cy,C,,E)+W, (4,C,,C, ,E)+W;(17,C4,C, , E)
with W, given as defined in Section 5.1, W, = jw/Cf —CZtan®*¢dg ,W, = C,1" and 5C7 +CZ =5C°.

After some calculations, one finds the solution of the canonical system governed by the Hamiltonian F” for a
given set of initial conditions:

a, . . C
a"(t) = 0 a"sin’k, =al smz(ﬁyﬂrko) y=—————(r-1,)
4a; 2 2
. #o [;Etz—agp;'otJ Jslcz+c?)
sing =sink;sinz 1" =k, +tan*(tan r/seckl)—%z-cosk1
al) 1 agz 1
2 :(a_?’j pa? *3 p? (SSec2 k, — 4(_a’?3 - a”zj P = p;’oz(sec2 k, —sec’ ¢) Py =py,, (29)

with the auxiliary constants k,, k, and k, defined as functions of the initial value of the adjoint variables by

"2

Blagp, f + pizbsectk-4) ,  pE+piTsec’s,
p;?(5sec?k, —4) ’ v p;?

4
csc’k, = .k, = 17 —tan"*(tan ro/seckl)+gr0 cosk, .

The constants C, C,, C, and E can also be written as functions of the initial value of the adjoint variables:
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== p;’oz(Ssec2 K, —4), C,=p;, Ci=p; +p'tan®g,, 4uE=ag(8 ( (ag pgo) + p[’2(53ec2 K, —4)).

The initial conditions are a"(0)=a;, e"(0) =sing, and 1"(0)= 17, and, 7, is obtained from sing, =sink,sinz,.
Following Hori method (Hori, 1966) and applying the initial conditions, one finds:

15
a(t)=a'(t)+ a—3[8e’sin E'a”p, + 41— e?)sin E'a’p;] (30)
u
a® 5 3 1 ;
oft) = e'(t)+ [ [ al—e?)sin E'ap, + (L—e| - 2e'sinE’ + >sin2E'——e'sin3E’ |p{ | |, (31)
p 4 4 12 .
a® (9 1.1 1 y
1t)=1(t)+, [~ (1—e'2T (——e’+e’3)sin E’+(—+—e’2)sin 2E'——e¢"®sin 3E’ |p; (32)
P 4 42 12 y
0
with a’, e', ..., p, given through Egs (20) (with p; replacing p. ) and (29). The eccentric anomaly E’ is computed

from Kepler's equation with the mean anomaly M'(t) = M'(t,) + j :n'dt .
0

5.3 Transfers between non-coplanar co-parameters orbits

For transfers between non-coplanar co-parameters orbits F, and S; simplify and are given by:

a, !2 2 12 )Ar2 1 12
F = l-e += , 33
1 2/,1 { pa 2 ( )pe 2 pl } ( )

I {8e sinE’a’?*p? +8(l—e’2)sin E'a’p,p, + ( - 2{—%e'sin E'+%sin 2E’—%e’sin3E’} [
(34)
o1 1
+p)? esmE —=sin2E’'+—e'sin3E’
4 4 12

Consider the Mathieu transformation defined by Eq. (20) with p; replacing p, . The Hamiltonian function F' is
invariant with respect to this transformation and it is given by

Fr-2 {4a”2pa += P+ p;’z}. (35)
2p

Note that Eq. (28) reduces to Eq. (35), taking tan ¢ =0. Thus, Eq. (29) simplify and the solution of the canonical
system governed by the Hamiltonian F" for a given set of initial conditions is given by:

ag . .
a"(t)= 27 71 d a"sin’k, =aJ smz(ﬁyﬂrko) W= JE (p-¢,)
1+ [Etz—agp;’ J 5C,
u \2 ’
3

” " C " a" " 1 a” 1 " "

" = '°+_J§ZCW pa’ —(a‘iJ pa + (5p¢0 +py (a;g ——a,,ZJ =Py P =D, (36)
_ . _ o, 8lagps, ) +5p52 + py?
with the auxiliary constant k, defined by csc” k, = > > . The constants C, C,, C, and E can also
5p;;0 + pi’O

be written as functions of the initial value of the adjoint variables:
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1 " 4 n ” " " "
C?=pl ts P>,  C,=pl,, C=p,, 4yE:a0(8(a0 Pa. )2 +5p5” + p,oz).
The initial conditions are a"(0)=ag, e"(0) =sin ¢, and 1"(0) =17 .

Following Hori method (Hori, 1966) and applying the initial conditions, one finds that a(t) and e(t) are given by
Egs (30) and (31), respectively, and

5 E
1(t)=1(t)+ a_s Fe’sin £~ Lsin2e'+ L ersin 3E'} P | . (37)
2L 4 12 .

with a’, e', ..., p, given through Egs (20) (with p; replacing p. ) and (36). The eccentric anomaly E’ is computed
as described in Section 5.2.

6. CONCLUSION

Approximated analytical solutions, which include short periodic terms, have been obtained for three different
problems involving optimal low-thrust limited-power transfers between elliptical orbits in a Newtonian central gravity
field using an approach based on canonical transformations. The two-point boundary value problem of going from an
initial orbit to a given final orbit can be solved through a Newton-Raphson algorithm using these solutions, as described
in da Silva Fernandes e Carvalho (2008). Finally, it should be noted that similar results are obtained for maneuvers
between non-coplanar orbits involving changes in the longitude of the ascending node.
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