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Abstract. The use of fixed partial dentures in rehabilitations of edentulous jaw with implants is a well documented fact, 
although controversies still exists about splinting or not prosthetic crowns in these conditions.  Thus, the aim of this 
study was to analyze the effect of prosthetic crowns detachment of a fixed partial denture with surface and punctual 
contacts by means of stress gradient evaluation determined by the technique of plane transmission photoelasticity.  
Three photoelastic models were created with 3 contiguous implants corresponding to posterior jaw aligned in straight 
line, varying the contact between the crowns (contact point = CP; contact surface = CS; splinted = SP).  Three 
loading types were applied: a = axial in group (30 N); b = lateral with a 40º angle (10.8 N) over the implant 
corresponding to the first molar; c = central axial (9.8 N) over the implant corresponding to the second premolar.  
Thirty images were obtained of each loading type in each group (n = 270) in the circular polariscope.  Fringe orders 
and maximum shear stress (τ) values were obtained by the computational program “Fringes” by means of photoelastic 
analysis of 27 points of each image and right away of 12 points in bone crest region.  It was carried out the t-Student 
test with p<0.05 and the stress intensity calculation on specified points.  The majority of the points presented 
statistically different (p<0.05) in different groups.  The SP group presented minimum stress values in all loadings.  The 
CS group showed more homogeneous stress distribution around the implants in all loadings and minimum stress 
values in the bone crest region when compared to the CP group.  Within the limitations of this study, the SP group 
presented better results, followed by the CS group, indicating that the use of splinted prosthetic crowns and contacts by 
surface is possible considering only stress values. Future studies must be done to assess the results obtained in this 
work. 
Keyword: Interproximal contact, Fixed partial dentures, Dental implants, Photoelasticity, Stress. 

 
1. INTRODUCTION 
 

The rigid union of prosthetic crowns over multiple adjacent implants has been recommended by means of clinical 
considerations and in vitro studies (Weber and Sukotjo, 2007). This condition also has been analyzed by Weinberg 
(1993), who affirmed that the movement capacity of osseointegrated implants is microscope and do not favor an 
effective oclusal forces distribution to multiple implants in the same prosthesis. However, due to elastic strain of system 
components, some loading transfer may be possible splinting adjacent implants. On the other hand, the crowns union of 
a structure that does not present a passive framework fit, it means a perfect adaptation of the prosthesis over the implant 
platform, may overload the screws or even the implants (McGlumphy et al., 1998). Thus, some authors have suggested 
that adjacent implants should be restored individually (Guichet et al., 2002). The photoelastic analysis has been largely 
applied in Dentistry to study stress distribution around dental implants (Bernardes et al., 2006). This technique consists 
in an optical property of materials which behave in anisotropic way under loading presenting different refraction ratings 
in the main stress directions (Dally and Riley, 2005). 
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Therefore, the aim of this study is to value the effect of splinted crowns in opposite the separating crowns of fixed 
partial dentures over implants placed in posterior jaw with contacts by surface and punctual by means of qualitative and 
quantitative stress analysis determined by the plane transmission photoelasticity technique. 
 
2. MATERIALS AND METHOD 
 

Brånemark system implants were used (Titamax TI Cortical Neodent®, Curitiba, Brazil) of 13.0 mm x 3.75 mm 
(external hex interface) with a 4.1 mm platform, which corresponded to fist premolar (1PM), second premolar (2PM) 
and first molar (1M) of posterior jaw. The samples consisted in three metallic structures (Ni-Cr) that simulates fixed 
partial dentures over three adjacent implants, varying the interproximal contact. The CP group consisted in three crowns 
separated by points of contact presenting 1.0 mm diameter, the CS group consisted in three crowns separated by 
surfaces of contact with 3.0mm diameter and the SP group consisted in three splinted crowns. The implants distribution 
was 5.0 mm between 1PM e 2PM implants and 5.7 mm between 2PM and 1M implants. A canine tooth was made with 
acrylic resin and it was placed into a hole 2.0 mm before 1PM implant (Fig. 1).  

 

 
 

Figure 1: (A) Dimensions of the acrylic matrix; Detail of the interproximal contatcts: contact point (B), surface 
contact (C) and splinted (D). 

 
After the obtaining of the silicon rubber molds (Silaex® Química LTDA, São Paulo, Brazil) by means of an 

articulated acrylic box and an acrylic matrix, it was obtained three photoelastic models made with flexible resin 
(Polipox® Indústria e Comércio LTDA, São Paulo, Brazil). After the 24 hours, the cure of the resin was complete and 
the photoelastic model could be removed from the mold with smooth movements and it was taken to a circular 
polariscope, with the absence of residual stresses resulting from a process called "edge effect" (Dally and Riley, 2005). 
The optical constant value of the photoelastic resin (Kσ = 0.36) was determined using a calibration process in a 
compressed disc made with the same photoelastic material (Dally and Riley, 2005). 

The photoelastic resin used in this study has high sensitivity but has low resistance to large deformation. Thus, the 
range of work force applied on this material is small and with low values. The values of applied load in this test were 
calibrated in such a way that could allow a better resolution of the fringe orders in the model and allow a comparative 
analysis of the phenomenon for the three types of crowns on implants evaluated. Three loading types were applied in 
each model: a = in group and axial (30 N); b = with 40o angle over 1M implant (10.8 N); c = central and axial over 2PM 
implant (9.8 N). It was made three splinted crowns (Ni-Cr) for “a” loading, simulating an ideal occlusion condition 
(Misch and Bidez, 1994), where does not exist premature contacts and load transfer is related to the implant angle (Fig. 
2). Thirty (30) images of each loading type in each group were obtained (n = 270) by the circular polariscope. For each 
new image, models were unloaded and loaded again, attempting to get the same way of contact of the loading device 
over the crowns. 
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Figure 2: (A) Acrylic matrix fixed into the articulated box; (B) photoelastic models CP, CS and SP; (C) adjustable 
table on x, y and z directions with “a” loading; (D) “a”loading; (E) “b”loading; (F) “c”loading; (G) circular polariscope 

and loading cell. 
 
Fringe orders and shear stress (τ) values were calculated by a Fringes software using the computerized photoelastic 

analysis determined by “Optical Law of Stress” (Dally and Riley, 2005) (Eq. 1). 
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From equation (1) and equation (2) it is possible to determine the shear stress from the measured fringe orders, 

namely:  
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where σ1 and σ2 are the principal stress, fσ is the photoelastic constant of the material, N is the order of fringes and b is 
the thickness of the photoelastic model. 

A mesh of 27 points of analysis was determined by a external file to standard the regions of analysis (Fig. 3A). 
Aiming to examine critical areas in the bone crest of the implants a mesh of 12 points was also made for the 1M 
implants (CPb, CSb and SPb) and 2PM (group CPc and CSc) (Fig. 3B). Aiming to verify the existence or not of 
statistically significant differences, between each of the 27 points got in the 30 images of the three groups and the also 
the 12 points of the bone crest, it was applied the parametric t-Student test (p<0.05). It were done a data normalized 
process through the area under the mean shear stress (τ) for each group, called “pseudo-energy”. 

 

 
 

Figure 3: (A) Mesh of 27 points; (B) mesh of 12 points – zoom of the bone crest region 
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3. RESULTS 
 
For “a” loading, the stress distribution in the implants of groups CP, CS and SP can be seen in figure 4, where it can 

be noticed the similarity between them in a qualitative analysis. Most points when compared between types of 
interproximal contact, were statistically different (p<0.05).  Points around the implants in the CSa group had lower 
levels of stress when compared to the CPa group (except points 18, 24, 26, 27). For this type of loading, the implants of 
the extremities presented higher stress levels in all groups. In the SPa group, the central implant (2PM) had the lower 
stress levels (33.7 kPa) (Fig. 5). 
 

 
 

Figure 4: representative images of stress distribution on groups CPa (A), CSa (B) and SPa (C). 
 

 
 

Figure 5:  Means values of  shear stress  (τ) for “a”  loading. 
 
The evaluation of the different groups in “a” loading (CPa, CSa and SPa) was performed considering all points, by 

normalized process using lower value of the graph area (SPa = 568.76) (Tab. 1). 
 

Table 1: Graph’s area - a; Normalized areas - a. 
 

Comparative areas - “a” load Normalized areas - “a” load 
CPa CSa SPa CPa CSa SPa 

661,63 632,69 568,76 1,16 (16,32%) 1,11 (11,23%) 1,00 (0%) 
 
 For “b” loading, the distribution of stress in the implants of groups PC, SC and ES can be seen in Figure 6. It is 

possible to observe that the 1PM and 2PM implants were minimally required in the CP and CS group. In SP group there 
was a change in the stress distribution since the mesial of 1M implant had lower stress levels (point 20 = 1.31 kPa), and 
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there was a higher stress distribution around the tooth and the  1PM and 2PM implants. The values of shear stress at 
points around the 1M implant (points 21 to 27) were lower in the CSb group. When the groups CPb x SPb and CSb x 
SPb were compared, most points were statistically different (p <0.000) (Fig. 7). The values of the area under the stress 
curves were normalized by the group that received lower value of the graph area (SPb = 219.32) (Tab. 2). 

 

 
 

Figure 6: representative images of stress distribution on groups CPb (A), CSb (B) and SPb (C). 
 

 
 

Figure 7:  Means values of shear stress (τ) for “b” loading. 
 

Table 2: Graph’s area - b; Normalized areas - b. 
 

Comparative areas - “b” load Normalized areas - “b” load 
CPb CSb SPb CPb CSb SPb 

305,52 296,68 219,33 1,39 (39,29%) 1,35 (35,26%) 1,00 (0%) 
 
In the region of the 1M implant’s bone crest (zoom) submitted to lateral loading (b) there is less stress gradient in 

the mesial of the implant of SPb group (point 4 = 4.23 kPa). On the implant’s distal, the stress level between the groups 
is similar (point 9). The CSb group had lower concentrations in all 12 points when compared to CPb group (Fig. 8). 
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Figure 8:  Means values of shear stress (τ) of the bone crest region of 1M implant for “b” loading. 

 
Table 3 shows the results of the graphs’ areas under the curve of stress for the groups analyzed in the loading type 

"b" in 12 points in the area of the 1M implant’s bone crest. The values shown in table 3 are normalized by the group 
that obtained lower value of the graph area (SPb zoom = 136.91). It is observed that the CSb zoom group presented 
levels 98%higher than the SPb group zoom and the CPb group 106% higher. 

 
Table 3: Graph’s area – b zoom; Normalized areas – b zoom. 

 
Comparative areas  grupo “b” zoom  Normalized areas grupo “b” zoom 

CPb zoom CSb zoom SPb zoom CPb zoom CSb zoom SPb zoom 
282,15 271,19 136,91 2,06 (106%) 1,98 (98%) 1,00 (0%) 

 
For “c” loading, the distribution of stress in the implant of groups CP, CS and SP can be seen in Figure 9. A higher 

stress concentration around the 2PM implant could be observed for groups CP and CS. Although the stress distribution 
around the tooth is higher in the SPc group, this group showed a reduction in the stress level around the implants, 
followed by the CSc group. Many points (1-19 and 23) of the CSc group showed lower levels of stress when compared 
to the CPc. All the analyzed points between groups CPc x SPc were statistically different. The 2PM implant in SPc 
group presented the lowest stress levels (point 18 = 10,8 KPa) (Fig. 10). Table 4 shows the normalized values 
determined by the group that received lower value of the graph area (SPc= 201,3). 

 

 
 

Figure 9: representative images of stress distribution on groups CPc (A), CSc (B) and SPc (C). 
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Figure 10:  Means values of shear stress (τ) for “c” loading. 
 

Table 4: Graph’s area - c; Normalized areas - c. 
 

Comparative areas - “c” load Normalized areas - “c” load 
CPc CSc SPc CPc CSc SPc 

323,25 265,56 201,33 1,60 (60,55%) 1,31 (31,89%) 1,00 (0%) 
 

For the bone crest area of the 2PM implant, at the central loading (c), it is noticed that the CSc zoom group showed 
a lower stress concentration on all 12 points as compared to CPc. The higher levels of stress were in the more superior 
and closest area of the implant, both at the mesial as the distal (point 9), with the highest value of the PC group (25.8 
kPa) (Fig. 11). Table 5 shows the results of the graph areas under the curve of stress for the groups analyzed in the 
loading type “c” in 12 points of the bond crest area of the 2PM implant. The SPc group was not analyzed in the area of 
bone crest due to low stress values in the 2PM implant, discarding the need for comparison between other groups. The 
values shown in Table 5 are normalized by the group that received lower value of the graph area (CSc zoom = 196.2). It 
can be seen that the CPc zoom group showed levels 15.3% higher than the CSc group zoom. 
 

 
 

Figure 11:  Means values of shear stress (τ) of the bone crest region of 2PM implant for “c” loading. 
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Table 5: Graph’s area – c zoom; Normalized areas – c zoom. 
 

Comparative areas grupo “c” zoom Normalized areas grupo “c “zoom 
CPc zoom CSc zoom CPc zoom CSc zoom 

226,48 196,29 1,15 (15,3%) 1,00 (0%) 
 
 
4. DISCUSSION 

 
In rehabilitation of posterior edentulous areas, some authors recommend the placement of one implant for each 

missing tooth (Rangert et al.,1995). However, the number of implants required to support a fixed partial prosthesis 
depends on several factors such as available bone volume and its density, the nature of antagonist teeth and location of 
implants. The implants were positioned in a straight line in the photoelastic model because it is very difficult to achieve 
a significant misalignment of implants due to restrictions normally imposed by bone resorption (Itoh et al., 2004). Some 
authors defend the alignment in tripod for better balance of mechanical implants (Rangert et al.,1995). 

The higher success rates for partial fixed prostheses are reported in the literature in the posterior area of mandible 
(Lekholm et al., 1999). In rehabilitation with adjacent implants in areas with multiple dental absences, it is 
recommended in most cases, the splitting of fixed prosthetic restorations, which is necessary if there is not one implant 
for each tooth, also applied in adjacent unit crowns to achieve a better biomechanical behavior of the prosthesis 
(Weinberg, 1993). In this study, it was observed that the splitting of adjacent implants leads to a lower stress 
concentration around the implants, especially in eccentric loads. There is a smooth transfer of stress to the tooth in 
contact with 1PM implant in the “a” loading group. On “b” loading, the stress levels in SP group were smaller regarding 
the other groups. It is observed that the CSa group showed values 11.23% higher than the SPa group and the CPa group 
showed values 16.32% higher. It should be taken into consideration that functional deformations of mandible occur, 
such as torsion and bending, leading on higher stress values on posterior implants with splinted crowns (Chen, 2000). 
Moreover, splinted crowns in a structure that does not present a passive framework fit may cause overload in the 
implants and, consequently, in the surrounding bone (McGlumphy et al., 1998). One way to avoid this problem that 
jeopardizes the bone integrity is the crowns separation, individualizing the restorations over the implants, since the use 
of implant-supported restorations alone can reduce the cost and simplify laboratory procedures, facilitating the 
collection of structures that can provide a passive fit on the prosthetic connections (Guichet et al., 2002). 

The restorations separated by points or surfaces of contact in this study showed, in a qualitative approach, great 
similarity in the stress distribution around the implants in  loading "a" when compared to the splinted crowns. 
Grossmann, et al. (2005) complement the fact that when anterior healthy teeth and periodontal healthy canines are 
present, the canines immediately disocclude the posterior implants in lateral movements and the patient has vertical 
occlusal stability, the splitting of posterior implants may be unnecessary. The separation of the crowns can be beneficial 
to avoid periimplant diseases, improving interproximal contour and avoiding concentration of stress during jaw flexure 
(van Steenberghe et al., 1990) , as well as the patient satisfaction. However, in eccentric loadings the crowns separation 
can lead to a higher overload in the implants suffering premature contact. The contacts out of the long axis of the 
implant may reduce the strength of the bone (Misch and Bidez, 1994). The results of groups CPb and CSb showed a 
higher stress concentration on 1M implants compared to the SP group. On all loading types in this study, the CS group 
presented lower stress values compared to CP group. Considering the critical area around the implant (zoom), the 
implants of groups CSb and CSc showed a reduction in the concentration of stress at all points in the crest bone area, 
8% and 15.3% respectively, when compared to the group CPb and CPc. These results contradict the idea that the thicker 
is the interproximal contact the higher is the stress concentration along the implants with separated crowns (Guichet et 
al., 2002). Although it simplifies laboratory procedures, it should be kept in mind that adjusting interproximal contacts 
in individual crowns is difficult. The installation of individual implants in the posterior jaw has high success rates 
(Naert et al., (2002). As the groups CSc and CPc have similar behavior compared to individual implants and the highest 
stress levels in this study are within the range of strength of the cortical bone to shear forces. It is suggested that the 
separation of crowns may not cause damage in bone support. 

The real importance of this discussion is that the bone loss remains within the limits suggested by Albrektsson et al. 
(1986) of 0.2 mm per year following the installation of the prosthesis, because they are clinically viable values with 
which the Implantodontics has lived with for forty years. However, two other possible causes for bone crest loss beyond 
these limits observed around the bone integrated implants are reported: local tissue infection caused by bacteria of the 
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oral cavity, colonizing the interface pillar/implant and/or biomechanical stress acting on the bone crest around the 
implants causing local micro fractures and subsequent resorption of the surrounding bone (Adell et al., 1981). 

Considering the levels of stress obtained in the CP and CS groups, it is suggested that non-splinted crowns may not 
be harmful to the resistance of the bone’s physiological limit, as the range of resistance of the cortical bone to shear 
forces is 68 MPa (Reilly and Burstein, 1975). According to the results and limitations of this study, crowns separated by 
a larger contact surface have advantages with respect to the crowns separated by point of contact, because the 
distribution of stress in the system is smaller and more homogeneous. Under ideal conditions of occlusion, there is 
qualitative similarity between the groups (PCa x SCa x ESa) suggesting that the separation of crowns on implants can 
be performed with no pathological bone resorption. 

To allow the development of the analysis, the models used in this study considered some simplifying conditions 
such as the adaptation of clinical conditions to minimize the errors inherent of the loading procedure and preparation of 
the photoelastic model. However, the method used in this study was correctly indicated due to the complex geometry 
and loading in the models. And according to Dally and Rilley (2005), the photoelastic technique has advantages over 
other methods because it allows an optical analysis of continuous field. It is suggested the accomplishment of a clinical 
study to validate the study, which is in development. 
 
5. CONCLUSIONS 

 
Based on the stress gradient found in this study, it is observed that splinted crowns have better biomechanical 

behavior. It is suggested that it is possible to use a fixed partial denture on posterior implants with crowns separated by 
contact surfaces in ideal conditions of occlusion, aiming at improving the patient’s hygiene and satisfaction. Another 
analysis  including in vivo tests are necessary to approve that results. 
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