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Abstract. It is presented a proposition concerning ascent trajectory design for launch vehicles, aiming optimization of
orbit injection conditions. The contextual considerations of launch mission, and corresponding development which
lead to the settlement of required conditions, are included. In order to theoretically support the development in this
work, and focusing the necessary for such, some Calculus of Variations concepts are disclosed. Then, a model has been
developed with support on gradient-type method. To attain an effective serviceable product, diverse pertinent issues
have been addressed, including convergence, a relevant issue in iterative optimization methods. Based on the
aforementioned developed model, a software prototype has been implemented, as to allow the assessment of the model.
The tests have been run within an already available and certified software which simulates the dynamics and flight
attributions of a target launch vehicle. This smulation arrangement provides appropriate conditions for a fair
assessment of the trajectory design model. Presenting collected results from simulation tests, it can be verified the good
performance of the developed model. It could provide successful orbit injection, even in face of divergences from
expected values on flight parameters. The software prototype has been implemented so that it can be used in the
fashion of preflight trajectory design application, as well asin the fashion of an onboard guidance task.
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1. INTRODUCTION

The considered launch vehicle is configured witlidspropellant stages. Hence, once burning startsaich stage, it
proceeds without interruption for a fixed time ina, till final burnout, providing a thrust whosariable magnitude is
prescribed. In the ascent stage, control over #igcle is done through thrust direction, which ¢@mplished by
means of movable nozzles. The last, deploy stagmeant for complementing kinetic conditions fobibinjection,
with fixed direction thrust. Thus, the satellitedl orbit is already determined at the startingainsof the deploy stage,
when the vehicle should be stabilized in a deteedhidongitudinal attitude, so that it can achievdathwthe
complementation provided by last stage, the appatgpvelocity for orbit injection.

Flight is ballistic between end of the previouseadcand start of the deploy stage, beyond atmospBerring this
phase, a pointing algorithm (Leite Filho and Pint898) evaluates ongoing flight conditions and deiees what
should be that longitudinal attitude for the depdtgge, as well the ignition instant of the stdgethe possible satellite
orbit. Then the vehicle is put in the calculatetitide, without interference in its Keplerian trejery. Since this
trajectory is Keplerian, that ongoing flight corndits evaluated by the pointing algorithm are alyeadttled at the
beginning of the trajectory, that is, at the endhaf ascent stage. So, for a desired satellite, dhig vehicle must reach
certain conditions at the end of this ascent stage.

This work presents a model for the ascent trajgaesign, stressing the fulfillment of its requirithl conditions.
The model is developed in a basis of Calculus afafians, taking a gradient-type method as optitdramethod.

2. THEORETICAL BASIS
2.1. The optimal control problem

Let be considered a dynamic system with fixedahiitate, fixed initial and final instants, and aohded state and
control spaces. The system state is made up oftector of state variablex(t) = (x ) - x,()" OR", and the system

control is made up of then-vector of control variabletu)=(u,t) - u,t) OR™. The following set of state
differential equations define the system dynamics:

X =1 (x,u) 1)

wheref :R"xR™ , R". It is assumed that functiofié) and their partial derivative¥i/ox; , i, j = 1, ...,n, are defined and
continuous otR" xR™. Let be considered a given time intertgl ], and a given initial state:
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X(to) =Xg (2)

The control problem under consideration has thaiirement of achieving some final stext,), such that the
following g (g<n) final equality conditions are satisfied:

Px(t,) = (P x(ty) - Pt ) =0 (3)

wherew:R" . RY. It is assumed that functiot4(.) and their partial derivatives?/ox , k=1, ...,q, j =1, ...,n, are

defined and continuous cR". Besides the fulfillment of the above required &gy conditions, it is established an
optimization criterion (Bryson Jr. and Ho, 1975) fhe phase trajectory over the time intentgltf] and for the final
state at;, which is to minimize the performance index:

te
Pl = KoG(x(t;)) + K, [ LOx().u(®)at 4)

o

where G:R" - R and L:R"xR"™ _, R. It is assumed that functio®.), L(.), and partial derivative8G/dx;, oL/0X; , i =
1, ...,n, are continuoukK andK_ are positive weighting parameters.
The optimization problem is to determine an optie@htrolu*(t) for tojt,,t,], capable of transferring the system,

by means of the dynamics in Eq. (1), from initi@ts atty (Eq. (2)), to a final state gtso that final conditions (Eq. (3))
are satisfied, and minimizing the performance inéex (4). The corresponding phase trajectory isotksh optimal
trajectory,x*(t). This variational problem with such performanodex Eq. (4) is called a Bolza problem. When the
index does not contain component function on bogndalues like the above functioB, but only the integral
component, the problem is called a Lagrange problimen the index does not contain integral compblika the
above with functiori, but only function on boundary values, the probismalled a Mayer problem (Mcintyre, 1968).

2.2. Variational problem transfor mations

The foregoing Bolza problem may be transformed atdayer problem, by defining an auxiliary stateiafale x,.1
so that Xq = fra (X, U) = L(X,U) , with X, (tg) =0 thus yieldingk (G(x(t, )) + K, x,.1(t;) as the performance index

to minimize, which configures a Mayer problem. Thowing definitions for then+1 state equations amd-1 initial
conditions incorporate the new auxiliary state afalex,.

x =f(X,u) 5)
X(to) = %o (6)

Also, depending upon the numerical method chosesoliee the problem, it may be worthwhile to get bfdfinal
conditions as formulated in Eq. (3), by incorpargtthem into the performance index, regarding timathie numerical
solution process, such final conditions are to dtésBed to some precision level. Introducing thpositive weighting
parameter&ysy, ..., Kyg, the new performance index to minimize becomes:

BX(t1)) = KgGX(ts ) + K Xnu (t1) +ZE=1(KW (7, (e ) ) )

Now, the equivalent optimization problem is enutesaas to determine an optimal conted(t) for tOt,,t, ],

capable of transferring the system, by means oflylmamics in Eq. (5), from initial state tgt(Eq. (6)), to a final state
att;, in such a way to minimize the performance indgx ).

2.3. Gradient method

This also called steepest descent method (McInfy@68) is used in this work to solve the above igecoptimal
control problem. Introducing the adjoimt{1)-vectori) = (A, t) - A, A1) OR™ of Lagrange multipliers for the

constraints in Eq. (5), and the Hamiltonian funetig, »,u) =27 (x,u) , we form the augmented performance index:

J=¢3+tJLXT (?—f_)dt=q§+tj(KT?—H)dt 8)

to to
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In Eq. (8), since(X —f) is null, minimizingd is equivalent to minimizingp. As necessary conditions for optimality,

the adjoint vectof. must satisfy the following adjoint differential @ations, known as Euler-Lagrange equations, and
final transversality conditions, respectively:

a(t)=-HT 9)
Mte) =-0)y, (10)

Partial derivatives®,,Hy,H,,, are considered row vectors. Le(t) be a initial estimate for control driving the

system from the given initial statetgto a final state a, but producing a non-optimal vald@®) for the performance
index. Expanding Eq. (8) in Taylor series ab#{uf), and truncating after the first order terms, ket

@ = (o +17), &(tf)—lj.[(H;+XT)&+HudJ}:it (11)
to

Using Egs. (9) and (10) on Eq. (11), yelds:

ty
& =~ [ H,dudt (12)

o

Now, asJ(u’) is not minimal, we can achieve a minor vallfg’) = J(u% + 6J with a negative’J, by means of
appropriateju(t), to < t < t. So, to minimizel, we minimizedJ (steepest descent). But, we are limited by thealiity
assumption in the Taylor series expansion and atime, so we restriciu(t), requiring that:

t
[autdt=K? (13)

fo

where K is some small positive quantity, chosen to quwntiife step in control correction. Hence, we hawe th
optimization problem of minimizingJ, Eq. (12), subject to the constraint &u(t), Eq. (13). In Calculus of Variations,
this problem is configured as a isoperimetric peab(Golfetto, 2004), whose solution is:

to

ty 2
&= K[jHuzdtJ HT (14)

Y2
From Egs. (12) and (14), the corresponding chamgeiformance index ig; _ _K[lezdt] .

to

The process to find a solution is iterative; thlugeof parameteK may be refined from any iteration to the next, as
consequence of some convergence evaluation. A datiqmal procedure for the method is as follows:

step 0) Establish and record a initial estim&(®), t, < t < t;, for the control.

step 1) Starting with initial state in Eq. (6),6gtate the system state fragrto t;, using Eq. (5) within the effective
control. Record the phase trajectx(t) .

step 2) Equation (3) may be computed at this ptfithe final equality constraints are satisfieddahis is the only
issue that really matters, the process may behiist this point, with currently effective conthbaing the solution.
step 3) With Eq. (10), compute the final valijt, ). Starting with these values, integrate backwaaimt; to t,, the

adjoint equations using Eq. (9), and the non—negatitegrandHf, to obtainthuzdt. RecordH,(t).

tD
t . .. . . i
step 4) h‘szdt 0o to the desired precision level, the mininddlas been reached, the currently effective coigrol
u

fo
the solution and the process is finished. Yet, sother criteria may be used to finish or not thecess.
step 5) Using Eq. (14) with recordéti(t), computesu(t), and add it to the effective control, gettingemncontrol
estimate for a new iteration, restarting from step
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3. TRAJECTORY DESIGN
3.1. Satellite deploy requirements

The launch mission is to deploy a satellite indstmial circular orbit of radiufRs; hence its velocity must be
orthogonal to its geocentric positional radius hade the magnitude,, = (u/Rg,)'?, whereu=398601,2 Knys”,

The pointing algorithm (Leite Filho and Pinto, 199&es an impulsive model, also used here, for theirtoy in
deploy stage: the nominal orbital velocity at the injection point results from the vector itidd Vp+dVp, whereVp
is the velocity at the end of ballistic phase @My, is the increment provided by the burning of depdtgge. In our
case, the orbital plane is the same as the fligdniegp defined by vehicle geocentric distance ardcity vectors of
ballistic phase prior to deploy stage, thaMs, 6V andVs are coplanar on that plang, is the trajectory anglép is
the pointing angle. Circumferential and radial comgnts of the above vector addition should be:

Vp, cosB, +Vp cosb, =Vep = (1/Rep )2 (15)
V sin By + NV sindy =0 (16)

With the purpose of suppressifg yet assuring both above conditions keep holdirgget:

V2 - VgV c0Sfp +VE —NE =0 (17)
cosfp < +1=Vp cosfp + Ny Vg 20 (18)
cosb 2 -1=Vj cosfy —Vp —Vg <0 (19)

Equations (17), (18) and (19) are equivalent to. EfjS) and (16). Transgression of Eq. (19) meaesvithicle
getting to the beginning of deploy stage in sueltesthat, even with pointing opposite to the delsosbital orientation,
it would not be possible to brake it sufficienttydchieve the specific velocity for the orbit. Assng that such adverse
state is physically unattainable, Eq. (19) is taltemmplicitly satisfied and will not be consideiteereafter.

3.2. Ascent stage end requirements
In the foregoing conditions, variabl&4, and fp refer to the starting of deploy stage. I[Rtbe the geocentric
distance V; the velocity angs; the trajectory angle, at the end of ascent stAgahe trajectory between end of ascent

stage and start of deploy stage is Keplerian, filoeenconservation of angular momentum and of enevgyget:

ReVp cosfp = R;V; cosf¢ (20)
VE/[2-VE =VZ/2- /R (21)

From Egs. (20), (21), (17) and (18), and doing emment substitutions of variabl& andp; for variablesV,; and
V¢, considering that,; = V; sing;, Vi = Vicod:, Vi = Vi + V4, result:

1 (Ry Vit Vet ) = 2R Vg + 2/ Ry Vi —Vf -V + V5 =0 (22)

RV /Rep + &p ~Vgp 20 (23)
where o, =V4, /Ry - Considering the tridimensional Cartesian spadinel@ by coordinate®, V, and V., Eq. (22)
defines a surface, target set, in this space, whos#s R, Vi, V) satisfy the conditior’”;. Figure 1 illustrates a

sample section of such surface, generated foritabradiusRsy = 7128 Km (altitudéHs = 750 Km) and deploy stage
incremental velocityVp = 3,47 Km/s.
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Figure 1. Target surface for the end of ascegies@y = 7128 Km; 6Vp = 3,47 Km/s)

In the course of the ascent stage, vehicle’s stat@blesR(t), V,(t) andV, (t) describe a phase trajectory in the
above space, determined by vehicle’s state equatamd with initial point settled by initial conidihs Ry, Vo and V.
Trajectory design is to quantify control, pitch &é(t), so that end poinR, V,;, V) of trajectory lies on target surface.
To mitigate discrepancies due to occurrence of midt before or after interception of phase trajectwith target
surface, such interception should be tangentiaichvmeans orthogonality between state equationorvend gradient
on the surface in the s#(R;, V1, Vi), that is, null scalar product between the vectors

¥, = (dRy /dt,dViy /dt, AV /ct)o (0%, /OR; ,0%1/dVy ,0%; /0Ny )= 0 (24)

Beyond atmosphere, active forces are thrust (cameseqacceleration of magnitude, with radial and
circumferential components = a sird anda. = a cod)) and gravity (acceleratiop/R?). Hence, state equations are:

dr/dt =V, ; aV,/dt =asind-u/R?+VZ/R; dV,/dt=acosd-V,V,/R (25)
Effectuating the scalar product in Eq. (24), wetbetadditional condition for the end of ascengsta
W, (Ry Vi Vg 8;) =Vyy tand; +Vy —wepR; =0 (26)

3.3. Ascent trajectory problem formulation

The state variables for this model are geocenigtadceR(t), radial velocityV,(t), circumferential velocity/, (t)
and pitch angled(t), all local but geo-inertially referred. Thrustcateration of magnitude, with its radial and
circumferential components anda;, is also time-variable. However, it is not necegdaking it as a formal state
variable, because its variation is modeled throadimear approximation of predicted thrust and nwasgflow, so that
its values at any instant of ascent stage may feetti calculated, independently of integrationeTdngular velocity
wy(t), temporal variation of(t), is the formal control variable for the modelofr Egs. (25), state equations are:

Vr
asing-u/R?+V2/R (27)
acosf-V,V,/R
wa

x=[R Vv, v, 6 =

From Egs. (22) and (26), the equality final cormtis are given by:

w712 200 R; Vs +24/R; =V -VE -G + NS _(0 (28)
L P V¢ tanb; +Vy — wep Ry 0

Performance index is conveniently chosen and itdmization is set as criterion for solution:

t
Pl = —K,,R;Vy + ij(waz/z)dt (29)

fo
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whereK,, andK_, are positive weighting parameters. Stressingribeease of the produBVy, we stress the fulfillment
of inequality final condition in Eq. (23). The igal component in the performance index is a chaiocgng energy
consumption reduction and also to improve convergetapability. As set forth in subsection 2.2, vedirk the

auxiliary state variablg,, resulting in the following reformulated sets tdte equations and initial conditions:

\C
asing- u/R?> +V2/R (30)
x=(R vV, V. & i) =| acoss-V,V,/R
a)a
a5 /2
X(to):(Po Vio Veo & O)T (31)

We also incorporate the equality final conditio&s}. (28), into the performance index, Eq. (29), akhfinally
becomes:

@ = —KnRiVes + Kol o+ (Kya/2JPf +(Kyp/2)P7 (32)
whereKy;, andKy, are positive weighting parameters. Thus, we haeeadptimal control problem of determining a

control w,(t) and corresponding trajectory, fragto t;, with dynamics expressed in Eq. (30), initial citiods in Eq.
(31), and the performance index in Eq. (32).

3.4. Ascent trajectory problem solution with gradient method
Using Eqg. (30) and introducing the adjoint veciorthe Hamiltonian functiohd is formed:
H (X, @) = AV, +A,(asing - i/ R2 +V2 [R)+ Ay (acosd -V,V, /R)+ Ay, ~ s [2 (33)
The adjoint differential equations and final tramssality conditions are, respectively:

VoAV, —AV,)/R? - 21, /R

— A+ /R
w=lh A g Ay A =-HI= (- 245V, + AV, /R (34)
a(A;sind - A, cosb)
0
Vet 0 LT LT
_ 0 0 l1’1Vr, WZVr, (35)
M) = =5, = Kol Ry [=Kg| 0| =Ky Pave, |~ Kool Yo,
0 0 0 V20,
0 1 0 0

where the partial derivatives &f and¥, are:

v

X

() _[ 20V ~p/RE) -y 2weRs ~Vy) 0 0
¥ ox ~ Wep tang; 1 Vi / (cosé’f )2 0
The partial derivative of the Hamiltonidhwith respect tavw,, and the iterative control adjustmeit, are:

(36)

He, =44+ s

tg 2
3w, = K[IHf,adt] Ho, (37)

to
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Thus, the general procedure described at the ensubsection 2.3 may be applied to find a solutmthis ascent
trajectory design problem.

3.5. Control law after target attaining instant

As approached in subsection 3.2, the target atiguimstant is that at which phase trajectory shantiercept target
surface. Even with Eq. (26) directing this interti@p to be tangential, depending on the amountefiual remaining
burning propellant, continuing phase trajectory lmiget significantly away from target surface, withrresponding
change in the attainable orbital radius. To avhid, twe impose the continuing phase trajectoryetepkadherent to the
target surface. To keep Eq. (26) holding at anytpeie get from¥, the following reference pitch angle, as a function
of ongoingR(t), V. (t), V(t), which is to drive trajectory after target atiagpinstant:

8 = arctaf(wepR-V,)/V, ) (38)
4. SIMULATIONS

Simulation cases have been performed with a soétyweototype, built for assessment tests of thedtajy design
model. The prototype runs concurrently with anotiailable software which simulates a target laurethicle. Results
from a mission case with designed orbit altitlitie = 750 Km are presented here. To confront thesdtsesith those
obtained from the same mission case, but runniagrijectory design software as described in (Nemamo, 2006),
which is an application of neighboring extremalsthme, each figure here shows plotted results froth.b

In simulation tests, we may consider attainableutar orbit radius as a variali, corresponding to an altitudi,
with value to be determined by the values of thepvariables R, Vi1, V4, at the end of stage. This way, we consider
Eq. (22) as a third-degree equation on variglgie. Within the mathematical solutions to the equatmme has physical

meaning for our case, and it has been used tah@adttainable circular orbit altitudds along the ending course of the
stage. Moreover, from Egs. (15) and (20), withcosg, =V, ,» We also plot the predicted pointing angiealong the

ending course of the ascent stage, as determindtebsalues of other variables, including the abiRye
4.1. Designed trajectories

The outputs presented here refer to the desigregdctory without any “in-flight” feedback along thawn
trajectory, that is, produced only with the avdiatata at the beginning of the trajectory. Figighows the designed
evolution of the formal control variable. FiguresBows the state variables designed evolution. dtliénes of what
should be the attainable circular orbit altitudel associated predicted pointing angle, as if bursaddenly occurs at
the corresponding instant in the designed trajgctme shown in Fig. 4.

Variation of vehicle's pitch angle Trajectory: 1st calculated (start of stage)
Wa ('/s) DeS|gn orbit altitude: Hsp 760 Km Target aﬂalnlng instant: star‘[ of thrust tail

{—first ordergradlentmethod \ I |
—nelqhbonng exTremaIs method oo

Figure 2. Control evolution in designed trajectory
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Vehicle's geocentric distance Trajectory: 1st calculated (start of stage) Vehicle's radial speed Trajectory: 1st calculated (start of stage)
R (Km) Design orbit altitude: Hsp=7%0 Km  Target attaining instant: start of thrust tail ¥r(Km/s)  Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail
6700 " ' ] 6.0 ; ; :
: : : -thrust tajl- : : : -thrust tajl-
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6675 55
—first order gradient method —first order gradient method
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]
§500 2.0
[
L
6475 15
scent scent
tage: tage:
6450 lapsec 1.0 lapsec
0 15 20 25 0 5 40 45 50 65 B0 K5 70 75(s) 0 15 20 25 0 5 40 45 50 65 B0 K5 70 75(s)
Vehicle's circumferential speed Trajectory: 1st calculated (start of stage) Vehicle's pitch angle, to local horizontal Trajectory: 1st calculated (start of stage)
¥e (Kmfs)  Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail Theta () Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail
6.0 : : ; : 90 : : ; :
‘ ‘ ‘ ‘ thrudt tajl- ‘ ‘ ‘ ‘ thrudt tajl-
; : : ; — orbit radiys d ; : : ; — orbit radiys d
5.
® —first order gradient method v —first order gradient method
—neighboring extremals method —neighboring extremals method
5.0 70
45 60
a0 50
35 10 oot
.
\\ //
3.0 30
/
25y 0
2.0 10
15 0
scent scent
tage: tage:
10 lapses 10 lapsec
0 15 20 25 0 5 40 45 50 85 60 K5 70 75(s) 0 15 20 25 0 5 40 45 50 85 60 K5 70 75(s)

Figure 3. State evolution in designed trajectory

Afttainable circular orbit altitude Trajectory: 1st calculated (start of stage) Predicted pointing angle, circular orbit  Trajectory: 1st calculated (start of stage)
Hs(Km)  Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail ThetaD(")  Design orbit altitude: Hsp=750 Km  Target attaining instant: start of thrust tail
850 " ' ] 50 ; ;

: : : — — —i— —l— —hdttail— — — + — — — : : : — — —i— —l— —hdttail— — — + — — —

| | | —> i orbit radius | | | —> i orbit radius
o —first order gradient method “ —first order gradient method

—neighboring extremals method, —neighboring extremals method,

800 10
775 35

\\
750 Hsp- 30
725 5
700 0
675 15
650 10
625 5

scent scent
600 unout 0 urnout
48 49 B0 51 52 B3 B4 B5 BF 57 BB B9 B0 b1 62  63(s) B8 49 80 51 62 B3 B4 K5 BE 67 KA B8 6O Bl 62  B3(s)

Figure 4. Designed trajectory: attainable circalebit altitude and predicted pointing angle

We verify in Fig. 4 that the attainable circulabibraltitude H{t) assumes the designed valdgs at the target
attaining instant (due to conditidky, Eq. (22)); at this instant the curik(t) intercepts tangentially the horizontal line
HsHs (due to condition?,, Eq. (26)); and after thatl(t) remains with the valuklss (due to control law Eq. (38)).
The time instant corresponding to initial pointaaftlined curve for attainable altitudds(t), as for predicted pointing
angledp(t), is the starting instant it is achieved feastipitif later circular orbit injection, if burnout ddenly occurs.

4.2. Guided trajectories
The outputs presented here refer to the guideddi@jy as performed by the launch vehicle simuldtderacting

with the prototype for the trajectory design modehich fulfills a guidance task. Figure 5 shows therformed
evolution of the formal control variable. FiguresBows the state variables performed evolution. diténes of what
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should be the attainable circular orbit altitudel associated predicted pointing angle, as if bursaddenly occurs at
the corresponding instant in the performed trajgctare in Fig. 7.

With respect to Fig. (7), refer to what have beemigd out for Fig. (4), within designed trajecexiin foregoing
subsection, here applied to guided trajectories.

Variation of vehicle's pitch angle Trajectory: measured and guided

Wﬂ(lﬁ) Desngn orbit altitude: Hsp 750 Km Target attaining instant: start of thrust tail
! : : : : : : : : 1 . hrust tajl->

= aﬂﬂlnﬁbie urbll rﬂdlus presewed

;flrst order gradient method
—nelghbonng e:dremals method

i |
: - ‘[ E
: i
: - ‘T JER S S - R |
i i i
B IRty SETTRELY EERE R R SR et TR SRR S S St SRR R
i i i
PR S N N S S S SN N N N RS O S S
: ‘ éascenl
; P ; stage:
L L B e e e Rt LR B S felapsec

Figure 5. Control evolution in guided trajectory
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Figure 6. State evolution in guided trajectory
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Figure 7. Guided trajectory: attainable circulebibaltitude and predicted pointing angle
5. CONCLUSION

Trajectory design and related optimization issuesy rhe performed by means of many available teclesiqu
especially for the numerical solving. It is usuaktassify the solution methods as either diredghdirect; and what we
have presented here uses a technique, first orddiegt, classified as a direct method. Results1feosimulation test
have been shown along with the results from anaigrfor the same mission case, but running adrajy design
software applying the neighboring extremals techejcclassified as indirect method. We observe tiat resulting
optimal solutions are very similar to each oth@spite precision criteria are not the same. Sinaulaests have shown
good results, although we have met some difficsiltieith the gradient method, in tuning the weightparameters and
the step in control corrections; whereas initiatisg of values for adjoint variables and convelgehad represented
main difficulties with the neighboring extremalstimed. These are issues for continuing research.
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