Listagem por temas:
Escolhendo um título você terá acesso ao arquivo original em Post-Script.
COB55 NUMERICAL SIMULATIONS OF THERMAL VISCOELASTIC FLOWS BY A STABLE FINITE ELEMENT METHOD
J.H. Carneiro de Araujo1, M.A. Silva Ramos1 & S. Frey2
1 Departamento de Ciência da Computação, Universidade Federal Fluminense Praça do Valonguinho s/no., 24210-000 Niterói/RJ, Brazil
2 Laboratório de Mecânica Teórica e Aplicada (LMTA)
Departamento de Engenharia Mecânica, Universidade Federal Fluminense, Rua Passo da Pátria no.156, 24210-240 Niterói/RJ, Brazil
In the present work, stable finite element simulations of thermal incompressible viscoelastic flows has been performed. The employed method consists of a four-field bubble formulation in terms of extra-stress, velocity, pressure and temperature, which employs a non-consistent SUPG scheme to approximate the advective term of the stress constitutive law and a GLS philosophy for the energy one. Some computational experimentations with Oldroyd-B liquids illustrate the good performance of the numerical procedure.
Keywords: Viscoelastic Fluid, Finite Element Method, Heat Convection
COB1382 ANÁLISE NUMÉRICA DE SISTEMAS VISCOELÁSTICOS LINEARES TRANSIENTES COM AMORTECIMENTO DESCRITO ATRAVÉS DA REPRESENTAÇÃO INTEGRAL / NUMERICAL ANALYSIS OF TRANSIENT LINEAR VISCOELASTICS SYSTEMS WITH DAMPING DESCRIBED BY THE INTEGRAL REPRESENTATION OF THE CONSTITUTIVE EQUATIONS
Edson Antonio Capello Sousa
Departamento de Engenharia Mecânica, Faculdade de Engenharia e Tecnologia - UNESP Bauru
C.P. 473 - CEP 17033-360 Bauru, SP, Brasil E-mail: capello@bauru.unesp.br
Euclides de Mesquita Neto
Departamento de Mecânica Computacional, Faculdade de Engenharia Mecânica - UNICAMP - Campinas
C.P. 6122 - CEP 13083-970 Campinas, SP, Brasil - E-mail: euclides@fem.unicamp.br
In the present article the viscoelastic, dissipative properties of a system are described by means of the convolution integral. This representation of the damping mechanism allows the inclusion of experimentally determined properties as well as data obtained from analytical models. This general formulation is applied to describe the transient response of a one-dimensional continuum (a bar). The formulation leads to an integer-differential equation . A numerical algorithm, related to the Newmark algorithm family, is presented to solve this integer-differential equation. Numerical studies using the one-dimensional system are presented to validate the proposed methodology and to show its potentiality. The proposed scheme is readily extended to more general Finite Element models.
Keywords: Dynamic viscoelasticity, Numerical analysis, Finite Elements