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Abstract 
 
The present work describes some results of a research program on the numerical modeling 
of structures in composite material, developed along the last years by a team at 
CEMACOM-UFRGS. Formulation for anisotropic viscoelastic behavior (including the 
effect of aging) and anisotropic damage are combined and implemented into a FE program 
that allows the analysis of shell structures in the context of finite displacements with small 
strains. Four numerical examples used for validation and verification are included. 
 
 
1. INTRODUCTION 
 

Composites with polymeric matrix and particularly those with fiber reinforcement, 
that provide higher (and taylorable) strength/weight ratio and additional advantages in 
terms of corrosion and fatigue tolerance,  are increasingly present in naval, aeronautical, 
mechanical and civil structures. In the last years, analytical and computational models have 
been developed that allow to model the effective behavior of complex structures and to 
optimize composite properties.  

A number of models have been already proposed for the prediction of the elastic 
modulus of composites, as reviewed by Hashin, [1965] and Christensen [1979]. The Mori-
Tanaka technique [Mori &Tanaka, 1973] can be used with relative accuracy even for 
periodic structures if the volume fraction is moderate ([Brinson, L C  & W S. Lin, 1998]. 
Current research work is directed to model more complex behavior, as viscoelasticity 
(linear and nonlinear), aging and damage. 
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Viscoelasticity: The analysis by Hashin [1966] shows that the viscoelastic effect in 
unidirectional fiber-composites is particularly significant for axial shear, transverse shear 
and transverse axial stress, matrix-dominated properties. The viscoelastic response becomes 
more pronounced under conditions of high temperature, sustained loading, and/or high 
stress level.  
Aging: The term aging refers to the change of material properties with age and can be 
broadly classified as physical or chemical. During physical aging the mobility of the chain 
segments is hindered, and the material becomes stiffer, so that at a  given time the 
compliance is decreased over that of a viscoelastic material without aging (Brinson & Gates 
[1995]).  Chemical aging produces different (generally opposite) effects [Liao et al, 1998] . 

Some works model the effect of viscoelasticity using the elastic-viscoelastic 
correspondence principle, applied through Laplace transforms.  Laplace transforms are not 
adequate to be used in age-dependent problems, where the kernel in the integral 
representation is not of the closed-cycle type. Sometimes, the effect of aging may be 
approximated using Laplace transforms associated with time shifting techniques. Still, this 
procedure is not adequate in some important cases ([Brinson, L C & F T Fisher, 2001]).  
Laplace transform techniques are also inadequate model nonlinear effects (as those related 
to damage). Thus, in this work incremental real time analysis is used. 
Damage: Swirlmat composites exhibit viscoelastic behavior as well as profuse 
microcracking and stiffness reduction under increasing loads. Its behavior may be modeled 
by means of isotropic continuum damage theory [Smith & Weitsman, 1999]). Composite 
laminates with unidirectional fibers (as pultruded sections [Barbero, 1998]), show similar 
characteristics but highly anisotropic behavior. This type of behavior is addressed in 
Section 4 using an anisotropic damage theory 
 Numerical analysis: in the context of structural analysis of complex shape structures by 
numerical techniques (as the Finite Elements or Boundary Elements methods), the use of 
more general constitutive equations (to be integrated numerically) seems adequate. In 
Section 5 formulations implemented into a Finite Element program for the analysis of 
composite plates and shells, including effects of geometrical nonlinearity, viscoelasticity, 
aging and damage are reviewed.  
 
 
2. EXPERIMENTAL BACKGROUND  
 

Composite laminates are known to sustain multiple damage modes under monotonic 
loading, most of which by are not critical by themselves but may combine or lead to other 
mechanisms causing failure. Some experimental work has been done on damage and failure 
of composites at room and higher temperatures (see for example, Daniel and Lee [1990.] 
and Akshantala and Brinson [2003]). In [Smith &  Weitsman, 1999] useful results can be 
found. For example, Fig 1 shows the effect of the creep stress on the normalized 
instantaneous compliance. 
 



 
Figure 1 – The effect of creep stress σ0 on the normalized instantaneous compliance, as given by the ratio 

Dd/D0, where Dd is the damaged compliance evaluated during unloading. 
 

And Fig. 2 shows the effect of the creep stress on the permanent creep stress after 
load removal.      
 

 
Figure 2 - The effect of creep stress σ0  and load duration t0 the permanent strain εp reduced 

at times 3 t0 after load removal (  t0 in 10
3 min., εp  in µε ). 

 



The behavior corresponding to “softening” aging (e.g. stiffness loss) is similar to 
that associated damage. In this work, we follow the usual trend and reserve the word 
damage to changes associated with stress and strain increments. 

 
 
3. LINEAR AGING VISCOELASTIC FORMULATION 
  
3.1. General relations   
 

A general relation for a linearly viscoelastic aging material can be written in the 
history-dependent (uniaxial) form [Creus, 1986] 
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( , )D t τ  is the response to a unit stress ( ) ( )t H tσ τ= −  applied at time τ . The 
representation above is the basic general integral representation that uses the concept of 
compliance. Others representations exist, among them those based on dynamic modulus. In 
theory these representations are equivalent, but in practice (due experimental limitations 
and inaccuracies) they are not. For structural materials under static load and expected long 
service lives, the use of a compliance based representation is more convenient. ( , )D t τ  has 
instantaneous and deferred components, whose separation is a matter of convention to be 
discussed in each case. For non-aging viscoelastic materials it is  
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For ageing materials two situations may arise. The first one corresponds to materials 
that become stiffer with age. In this case it is written 
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with ( ) 0    ;     C(t, ) 0E τ τ τ τ∂ ∂ > ∂ ∂ < . The instantaneous part in the creep compliance is 
a function of the delayed time τ  as the new bonds are initially unstressed and only react to 
incremental loads. In absence of creep ( , ) 0C t τ = .  Substitution of (3) into (1) yields 
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or, in rate form, 
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For materials whose stiffness degrades with age, the instantaneous part is a function 
of the current time t  
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with ( ) 0   ;    C(t, ) t 0E t t τ∂ ∂ < ∂ ∂ > .  For ( , ) 0C t τ = , 
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Both types of behavior, as represented by equations (5) and (8) are illustrated in Fig. 
3. It should be noticed that ageing involves, even in the absence of creep, history 
dependence and residual strains, features not usually associated with elastic behavior. 
Ageing introduces a kind of nonlinearity apparent in loading-unloading processes. In 
particular, (5) has the form of a hypoelastic relationship [Oliveira & Creus, 2005    ]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:  – Instantaneous behavior of softening and hardening materials. Typical response 

in strain  for a one-step loading.  (a) case 0E < .  (b) case 0E >  
 
 
3.3. Representation by Means of State Variables 



  
Softening case: the creep compliance function in (1) is approximated through a Dirichlet-
Prony exponential series as 
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(1) may be written  
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In terms of rheology models, equation (11) corresponds to a spring with a time-
dependent elastic modulus and “n” Kelvin elements with time-dependent parameters in 
series. 
 
Hardening case: In the hardening case we must work incrementally. From (1) 
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Approximating the derivative of the creep compliance function through a Dirichlet-
Prony exponential series as 
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It is then possible to write 
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3.4. Extension to multiaxial situations 
 

The uniaxial relation (1) has to be generalized to  
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In this work the composite material is modeled as linear viscoelastic, with 
orthotropic symmetry [Marques & Creus, 1994]. Then εi(t) are the components of the strain 
vector { } { }11 22 12 13 23 ,  ,  2 ,  2 ,  2ε ε ε ε ε ε=  and σj(t) are the components of the stress vector 

{ } { }11 22 12 13 23 ,  ,  ,  ,  σ σ σ σ σ σ= , at time t. Components ε33 and σ33  are not considered. 
( , )ijD t τ  are the creep functions corresponding to components εi and σj. Upon integration 

by parts, equation (16) may be written 
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Approximating the creep functions by a Dirichlet-Prony series it can be written 
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where 0
ijD , p

ijD  and  p
ijθ  are parameters to be determined from experimental results. M is 

the number of significant terms in the series and depends on the accuracy desired. The 
parameters  p

ijθ  are the retardation times. 
 
4. DAMAGE FORMULATION 

 
4.1.  Anisotropic damage and effective stresses 

  
According to Murakami [1983] proposal, a relation between the global stress 

tensor ijσ  and the effective stress tensor ijσ  is given by the linear transformation  
 

ij ijkl klMσ σ=  (19) 

where ijklM  is a fourth order damage effective tensor. For a generic state of strain and 
damage, the stress effective tensor ijσ  is usually no symmetrical. A symmetrical form 
for ijσ  it is obtained through the equation 
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where ijδ  is the delta de Kronecker   and  ijφ  is a second order damage tensor ([Voyiadnis & 
Kattan, 1999]). For the case of plane stress, 33 13 23 33 13 23 0σ σ σ φ φ φ= = = = = =  and the 
representation of the damage effective tensor [M] is reduced to  



[ ]
22 12

11 12

11 22
12 12

0
1M 0

1 1
2 2 2

ψ φ
ψ φ

ψ ψ
φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥∆ ⎢ ⎥+
⎢ ⎥
⎣ ⎦

 (21) 

 
with  2

11 22 12ψ ψ φ∆ = −  and ij ij ijψ δ φ= − . 
 
4.2. Constitutive equations for elastic damage 
 

The elastic relations,  for the cases of undamaged and damaged material are 
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 Using the hypothesis of equivalent elastic energy [Sidoroff, 1981] it is shown that  
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and (bar indicate effective values)  
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4.3. Constitutive relations for incremental analysis   
 

For incremental analyses in non-linear situations, constitutive relations in 
incremental form are needed. Differentiating equation (23) in relation to time, 
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From the symmetry of the damage tensor we obtain, 
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To obtain an explicit relation form, it is necessary to introduce a relation for the 
damage φ .  Let us consider the uniaxial case. The exponential equation KE Ee ε−=  is used 
to model the degradation of the elastic modulus, K being a constant to be determined 
experimentally. Then, the damage coefficients are obtained by the expression (24): 
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For the uniaxial case, (26) reduces to 
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and substituting in (34), 
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4.4. Stress concentration tensors 
 

In the following, the equations of Mori-Tanaka [1973] are used to find the stress in 
the fibers. In agreement with this theory, the stresses in the fibers are equivalent to the 
stress obtained through an equivalent inclusion. 

The expressions for the stress and strain concentration tensor FB  and FA , 
respectively, for the fibers are 
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where [ S ] it is the Eshelby tensor (fourth order) for the elastic case, [ I ] it is the identity 
tensor (fourth order), Mc  and Fc are the fractions of the volume corresponding, 
respectively, the matrix and the fiber. 
 Substituting (37) and (38) in the equations (39) and (40) we obtain the stress and 
strain concentration tensor MB  and MA , respectively, for the matrix: 

M M F F
ijkl ijkl ijklc A c A I+ =  (39) 

M M F F
ijkl ijkl ijklc B c B I+ =  (40) 

 Mura [1982] provides the non-null components of tensor [S] for fibers with circular 
cross-section. 
 
 
5. FINITE ELEMENT FORMULATION AND SOLUTION 
 

We follow the general procedure (Bathe [1996], Marques & Creus [1994]), 
including the effects of viscoelastic and hygrothermal deformations. As seen in [16] this 
leads to an incremental relation of the form 
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where 0

k
TK⎡ ⎤⎣ ⎦  is  the tangent stiffness matrix corresponding to step k, { }1k P+  is the vector 

of external nodal forces at step k+1, { }0
k F  is the vector of nodal point forces equivalent to 

the element stresses at the step k and, finally, { }0
vF ,{ }0

TF  and { }0
HF  are the vectors of 

viscoelastic, thermal and hygroscopic loads, respectively. 
The numerical solution of the problem is implemented through an incremental-

iterative procedure. For the solution of the non-linear equilibrium equations, we use the 
Newton-Raphson Method or the Generalized Displacement Control Method proposed by 
Yang and Shieh [1990]. 
 
6. VERIFICATION AND VALIDATION 
 

Some few examples are shown here for the viscoelastic aging and damage 
formulations. Other examples of the application of the FE program have been published 
elsewhere [Marques et al, 1994; Oliveira et al, 2000, 2003, 2004, Pavan et al, 2006]. 

 
6.1. Creep buckling of beam columns considering aging effects.   
 
A beam column example has been analyzed to show the effect of aging, both of the 
“hardening” and “softening “ types. The beam column has a length of 320 mm, a section 40 



mm wide and 20 mm thick and initial  curvature with 20mm central sag. The material is 
viscoelastic with the constitutive relations given by (5) and (8) respectively. 
The results, in the form of plots deflection-time are shown in Fig. 4 and indicate the effect 
of aging; coincidence between numerical and analytical solutionsis apparent . More details 
and other numerical and analytical solutions may be found in [ Oliveira & Creus, 2004].         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Creep-buckling deflections of beam columns in aging material 
 
6.2  Verification of the integration procedure for incremental damage 
 

To verify the incremental equation and the integration procedure implemented into 
the FE program, an isotropic plate subject to axial traction is analyzed. Numerical and 
analytical results are shown in Fig. 5 . 
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Figure 5 – Relation stress x strain and incremental numeric approach (E=200Gpa, K=2500) 
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6.3. Validation of the numerical damage analysis for a unidirectional composite 
 

The present formulation can be used to determine stresses in each constituent (fiber 
and matrix) of the composite. In this example, we consider a plate under uniaxial tension. 
Experimental details and mechanical properties of the materials are ( 410000.00FE MPa=  
e 80000.00ME MPa= ) [1]. Other properties were determined using mixture theory [2]. As 
the plate is under axial tension only one ijK  parameter for each matrix and fiber are 

needed: 11 11 11 50F MK K K= = = . In figure 5 the comparison between numerical and 
experimental results may be seen. 
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Figure 6 – Comparison of numerical and experimental results for composite and 
components. 

 
 
6.4. Viscoelasticity and damage 

 
This example corresponds to the representation of damage combined with 

viscoelastic behavior. A square plate of side 10 cm and thickness 0,2 cm, was modeled with 
one nine-node element with 2x2 integration points. The material properties are: E11 = 
2.0GPa ν12=0.30 θ=100 min.  The figure 6 represents the increase of strain in time  for 
K=250 and different values of uniaxial stress. 
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Figure 7 – Displacement x time for different tension (K=250) 

 
7. CONCLUSIONS AND FINAL REMARKS 
 
             Formulation and numerical examples are shown for composite materials, focusing 
the viscoelastic , age and  damage effects. The corresponding constitutive equations are 
implemented into a nonlinear FE code for plate and shell structures. 

 
Although the examples shown are limited to simple situations (for the purpose of 

verification of the numerical models), the FE program may be used with more complex 
structures, as referenced.  
 

In relation to the viscoelastic damage formulation, the extension of the current work to 
other load histories would require empirical information on each term of the damage tensor. 
Otherwise, we may try to define a “damage surface” akin to the yield surface in plasticity 
theory. For the viscoelastic case, this surface has to defined in the strain space. Work on 
this subject is under way and will be published elsewhere.   
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