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Abstract 

In this work, short cracks emanating from circular holes are studied. For several combinations 

of notch dimensions, the smallest stress range necessary to both initiate and propagate a crack is 

calculated, resulting in expressions for the fatigue stress concentration factor Kf and therefore the 

notch sensitivity q. A generalization of El Haddad-Topper-Smith’s parameter, which better corre-

lates with experimental crack propagation data from the literature, is presented. 

Introduction 

The distinction between “short” and “long” cracks is necessary when one attempts to use the 

stress intensity range fatigue crack propagation threshold ΔKth to calculate the safe stress range Δσ 

that can be applied to a cracked piece. ΔKth certainly can be applied to long cracks, but as the crack 

length a → 0, the stress range that could be applied on the cracked piece would be Δσ → ∞, which 

does not make sense, since the traditional fatigue limit of uncracked pieces Δσ0 is a finite value. In 

order to reproduce this behavior, several expressions have been proposed to model the dependency 

between the threshold value ΔKth and the crack size a for very small cracks [1]. Most of these ex-

pressions are based on length parameters such as El Haddad-Topper-Smith’s a0 [2], estimated from 

ΔKth and Δσ0, resulting in a modified stress intensity range 

IK (aΔ = Δσ π + 0a )         (1) 

where the so-called transition size for the crack, i.e., the size below which the crack must be treated 

as “small”,  is given by 
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which is able to reproduce most of the behaviour shown in the Kitagawa-Takahashi plot [3]. Yu et 

al. [4] and Atzori et al. [5] have also used a geometry factor α to generalize the above equation to 

any specimen geometry, resulting in 

I ( 0K aΔ = α ⋅Δσ π + a )         (3) 
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 Alternatively, the stress intensity range can retain its original equation, while the threshold ex-

pression is modified by a function of the crack length a, namely ΔKth(a), resulting in 
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where ΔK0 is the threshold stress intensity factor for a long crack.  

It is well known that the notch sensitivity factor q can be associated with the presence of non-

propagating fatigue cracks. Such cracks are present when the nominal stress range Δσn is between 

Δσ0/Kt and Δσ0/Kf, where Kt is the geometric and Kf the fatigue stress concentration factors of the 

notch. Therefore, in principle it is possible to obtain expressions for q if the propagation behaviour 

of small cracks emanating from notches is known. 

 Several expressions have been proposed to model this crack size dependence [6-8]. Peterson-

like expressions are then calibrated to q based on these crack propagation estimates. However, such 

q calibration is found to be extremely sensitive to the choice of ΔKth(a) estimate. 

 In the following section, a generalization of El Haddad-Topper-Smith’s equation is proposed to 

better model the crack size dependence of ΔKth. This expression is then applied to a single crack 

emanating from a circular hole, resulting in improved estimates of q. 

Analytical Development 

 First a new expression for the threshold stress intensity factor of short cracks is proposed, 

based on El Haddad-Topper-Smith’s equation: 
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 In the above equation, n is typically found to be between 1.5 and 8.0. Clearly, Eqs. (1), (3) and 

(5) are obtained from Eq. (6) when n = 2.0. Also, the classical bi-linear estimate is obtained as n 

tends to infinity. The main advantage of the adjustable parameter n is to allow the ΔKth estimates to 

better correlate with experimental crack propagation data collected from Tanaka et al. [9] and Liv-

ieri and Tovo [10], see Fig. 1. 

 
Figure 1: Ratio between short and long crack propagation thresholds as a function of a/a0. 

 Equation (6) is now used to evaluate the behavior of short cracks emanating from circular 

holes. The stress intensity range of a single crack with length a emanating from a circular hole with 

radius ρ is expressed, within 1%, by [11] 

( )IK 1.1215 a f aΔ = ⋅Δσ π ⋅ ρ        (7) 
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where x ≡ a/ρ is the normalized crack length. Note that, when the crack size a tends to zero, Eq. (7) 

becomes 

I
a 0
lim K 1.1215 a 3
→

Δ = ⋅Δσ π ⋅        (9) 

as expected, since the above equation combines the solution for an edge crack in a semi-infinite 

plate with the stress concentration factor of a circular hole, Kt = 3. Note also that the other limit, 

when a tends to infinity, results in 

I
a
lim K a 2
→∞

Δ = Δσ π                (10) 

which is the solution for a crack with length a in an infinite plate, where one of its edges is far 

enough from the circular hole not to suffer its influence in the stress field (in fact, the equivalent 

crack length would be a + ρ, however as a tends to infinity the ρ value disappears from the equa-

tion). Therefore, it follows that for a circular hole f(x=0) = 3 and f(x→∞) = 1/1.1215√2 ≅ 0.63. 

 From Eqs. (4-6), it follows that the crack will propagate when 
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 Using α = 1.1215 and ΔKth ≡ ΔK0 for a long crack, then the crack length parameter from the 

above equation is 
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 Using (11) and (12) a crack propagation criterion based on two adimensional functions f and g, 

which can be regarded as the loading and the resisting functions for this specific cracked geometry, 

can be proposed 
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 In this way, using the normalized crack length x ≡ a/ρ and defining k ≡ ΔK0/Δσ0√ρ, it is possi-

ble to predict that the crack propagates whenever 
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 Figure 2 plots f and g, assuming a material/notch combination with k = 1.5 and n = 6, as a 

function of the normalized crack length x. For a high applied stress range Δσ, the ratio Δσ0/Δσ be-

comes small, and the function g is always below f, meaning that a crack of any length will propa-

gate. The lower curve in Fig. 2 shows the function g obtained for a ratio Δσ0/Δσ = 1.4 which, as ex-

pected, never crosses f, since the maximum stress range at the hole root KtΔσ > Δσ0 is bigger than 

the fatigue limit of the material in this case. On the other hand, for a Δσ small enough such that 

Δσ0/Δσ ≥ Kt = 3, then g is always above f and no crack will initiate nor propagate, as shown by the 

top curve in the figure. 

 
Figure 2. Calculation of the fatigue stress concentration factor Kf from the functions f and g. 

 But three other cases can be noted in this figure, as follows. In the first case, illustrated by the g 

curve with Δσ0/Δσ = 2 in the figure above, g has only one intersection point with f. This means that 



stress levels of that order can cause a small fatigue crack to initiate at the notch root, but this crack 

will stop propagating by fatigue when it reaches a size a = x⋅ρ, obtained from the x value at that one 

intersection point. Therefore, at such stress levels non-propagating fatigue cracks will appear at the 

notch root (if fatigue is the sole damage mechanism able to increase the crack size). In other words, 

the piece can live forever with a non-damaging crack at the notch root. 

 In the second case, illustrated by the g curve with Δσ0/Δσ = 1.75 in the figure above, g has two 

intersection points with f. Therefore, non-propagating fatigue cracks will also appear in this case, 

with maximum sizes obtained from the first intersection point (on the left). Interestingly, cracks 

longer than the value defined by the second intersection will re-start propagating by fatigue until 

fracture. However, the crack growth between the two intersection points would need to be caused 

by a different damage mechanism, e.g. corrosion or creep. 

 Finally, the third case that can be seen in Figure 2 is for the g curve with Δσ0/Δσ = 1.64. In this 

case, the f and g functions are tangent and meet in a single point. This Δσ0/Δσ value is therefore as-

sociated with the smaller stress range Δσ that can cause crack initiation and propagation without ar-

rest. So, by definition, this specific Δσ0/Δσ is equal to the fatigue stress concentration factor Kf. 

Thus, to obtain Kf it is then sufficient to guarantee that the functions f and g are tangent at a single 

point, where x = xmax. This xmax value is associated with the largest non-propagating flaw that can 

arise from fatigue alone. So, given n and k from the material and notch, xmax and Kf can be found 

from the system of equations: 
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 This system can be solved numerically for each combination of k ≡ ΔK0/Δσ0√ρ and n values, 

that define the material and the hole size influence on the fatigue behavior of the plate. Thus the 

notch sensitivity factor q can be obtained from 
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Results 

 For several combinations of k and n, the smallest stress range necessary to both initiate and 

propagate a crack is calculated from Equation (15), resulting in expressions for Kf and therefore q, 

see Figure 3. Note in this figure that q is approximately linear with 1/k for q > 0. This results in the 

proposed estimate: 
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where q0(n) and q1(n) are functions of n, and q1(n) is typically between 0.85 and 1.15. Note also 

that if the estimate above results in q larger than 1, then q = 1. This will happen at holes with a very 

large radius ρupper such that 
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 Therefore, it is impossible to generate a non-propagating crack under constant amplitude load-

ing in notches with a very large radius, regardless of the stress level. The stress gradient is so small 

in this case that any crack that initiates will cut through a long region still influenced by the stress 

concentration, preventing any possibility of crack arrest. Equation (15) will not have a solution for 

xmax > 0, because ∂g/∂x in this case will be more negative than ∂f/∂x at x = 0. 

 On the other hand, it is possible to obtain a value of q smaller than zero, down to q = −0.2 for a 

circular hole, see Fig. 3. This can indeed happen for holes with a very small radius ρlower such that 
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 The physical meaning of a negative q is that it is easier to initiate and propagate a fatigue crack 

at a notchless border of the plate than at a very small hole inside the plate. The ΔKI of a crack at the 

small hole will soon tend to Eq. (10) due to the large stress gradient, while the stress intensity solu-

tion for an edge crack will be larger, since it includes the 1.1215 surface factor. In addition, for most 

materials, the size of this critical radius ρlower is just a few micrometers. This leads to the conclusion 



that internal defects with equivalent radius smaller than such ρlower of a few micrometers are harm-

less, since its Kf will be smaller than 1, and the main propagating crack will initiate at the surface. 

 
Figure 3. Notch sensitivity factors q as a function of the adimensional parameters k and n. 

 Note that several estimates, such as Peterson’s, assume that the notch sensitivity is only a func-

tion of the hole radius ρ and the material ultimate strength Su. Equation (17), however, suggests that 

q depends basically on ρ, Δσ0 and ΔK0, and also on n. Even though there are reasonable estimates 

relating Δσ0 and Su, there is no clear relationship between ΔK0 and Su. This means, e.g., that two 

steels with same Su but very different ΔK0 would have different behaviors, a fact that Peterson’s 

equation would not be able to reproduce. Therefore, notch sensitivity experiments should always 

include a measure of the ΔK0 of the material. 

Finally, data on 450 steels and aluminum alloys with (sic) fully measured Su, Δσ0 and ΔK0 are 

collected from the ViDa software database [12]. The average values of Δσ0 and ΔK0 are evaluated 

for steels with Su near the ranges 400, 800, 1200, 1600 and 2000MPa, and aluminum alloys near 



225MPa. Equation (17) is then plotted as a function of the notch radius ρ, using the above averages 

and assuming n = 6, see Fig. 4. Note that Peterson’s equations, which were originally fitted to notch 

sensitivity experiments, can be quite reasonably predicted and reproduced using the proposed ana-

lytical approach. 

 
Figure 4: Predicted and experimentally fitted notch sensitivity factors as a function  

    of notch radius for several materials. 
 

Conclusions 

A generalization of El Haddad-Topper-Smith’s parameter was presented to model the crack 

size dependence of the threshold stress intensity range for short cracks. The proposed expressions 

were used to calculate the behavior of non-propagating cracks. New estimates for the notch sensi-

tivity factor q were obtained and compared with Peterson’s results. It was found that the q estimates 

obtained from this generalization correlate well with crack initiation data. 
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