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Abstract

The main purpose of this paper is to demonstrate the applicability of the high-
order Finite Element Methods for non-linear elastic problems using 3D non-structured
meshes. Two finite element bases are presented and compared in terms of the con-
ditioning numbers of the local matrices. A Numerical example is used to validate
the application of the Spectral/hp FEM in the context of structural mechanics.
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1 Introduction

The quality of the approximation of Boundary Value Problems (BVP) obtained from
the application of the Finite Element Method (FEM) depends on the size and shape
of the elements, the properties of the approximation space and the regularity of the
solution [9, 7]. From the computational point of view, the choice of the basis for the
approximation space influences the stability and efficiency of the numerical procedures
used to calculate the approximated solution. In general the finite element basis consist of
piecewise polynomial functions defined on the elements of the partition which discretizes
the problem domain.

Specifically, the p-version of the FEM has the following main features [16, 10]: high-
order numerical integration; numerical differentiation; appropriate shape functions; ge-
ometric mapping for arbitrary domains; global C0 inter-element continuity; degrees of
freedom numbering; application of boundary conditions; and post-processing of results.
The p-shape functions are associated to the topological entities (vertex, edge, face and
body) of the elements. In general, these functions are built from one-dimensional Legendre
and Chebyshev polynomials [16, 17, 6]. Hierarchical or modal p-basis are characterized
by the following properties [10]: vertex modes have one magnitude at one vertex and are
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zero at all other vertices; edges modes have magnitude along one edge and are zero at all
other edges and vertices; face modes have magnitude along one face but are zero along
all other faces, edges and vertices. Hierarchy means that high order expansion sets Xp+1

contains the terms of the lower order expansion sets Xp, i.e., Xp ⊂ Xp+1. A nodal basis
denotes a non-hierarchical expansion which is associated with a set of nodal points and
generally based upon Lagrange polynomials.

Many p-shape functions have been presented in the literature [12, 13, 11, 14, 16, 5, 15,
18, 1, 8, 2].

Sherwin & Karniadakis [15] presented hierarchical shape functions for triangles and
tetrahedra based on collapsed cartesian coordinates, tensorial product, Jacobi orthogo-
nal polynomials and exact numerical integration using tensor product of one-dimensional
Gauss-Jacobi quadrature [10]. The collapsed coordinate systems for triangles and tetra-
hedra are obtained from the cartesian coordinate systems defined on quadrilaterals and
hexahedra, respectively.

A fully tensorial-based procedure to construct nodal and modal shape functions for
triangles and tetrahedral in barycentric coordinates was presented in [2]. Due to the use of
tensorial product, the modal functions have a natural global C0 inter-element continuity.
A unified approach to construct h- and p-shape functions for quadrilaterals, hexahedral,
triangles and tetrahedral based on the tensorial product of one-dimensional bases is in
[3]. The approach uses indices to denote the one-dimensional polynomials in each ten-
sorization direction. The appropriate manipulation of the indices allows the construction
of hierarchical or non-hierarchial and inter-element continuous or non-continuous bases.
In addition, a new tensorial basis for triangles is defined aiming to improve the sparsity
profiles of the local finite element matrices. The use of tensorial based construction has
advantages as the manipulation of only one-dimensional polynomials and their derivatives,
better computational performance and simplified implementation of parallel procedures
and use of one-dimensional integration rules [2].

The purpose of this paper is to compare the Spectral/hp FEM [10], originally developed
to CFD, and the shape functions developed [3] for the Laplace operator. After that the
Spectral/hp FEM is applied to a non-linear elastic problem. The paper is organized as
follows. First brief reviews of the Spectral/hp FEM and the shape functions given [3]
are presented. Comparisons for the Laplace operator is then considered. Finally, results
obtained from the application to Spectral/hp FEM to a non-linear elasticity problems are
presented.

2 The Spectral/hp Finite Element Method

The Spectral/hp FEM uses collapsed coordinate systems to define the shape functions
for triangles and tetrahedra. Figure 1 illustrates the procedure to obtain the triangle
T 2 = {(ξ, η) | −1 ≤ ξ, η; ξ + η ≤ 0} from the square R2 = {(a, b) | −1 ≤ a, b ≤ 1}.
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This transformation allows the use of tensorial product to write the shape functions for
triangles. Due to the rational nature of the transformation (a, b) 7−→ (ξ, η) ( a = 1+ξ

1−η
−1),

additional terms are included in the local expressions of the shape functions in the coordi-
nates (a, b) to obtain polynomial basis in the local triangular and quadrangular domains.
Figure 2 shows the analogous 3-steps transformation to obtain the local tetrahedron T 3

from the hexahedron R3 [15, 10].

Figure 1: Mapping between quadrilateral and triangular domains [15].

Local and global operations are defined for the Spectral/hp FEM. The local oper-
ations are related to the numerical integration, numerical differentiation and the local-
global mapping of the shape functions. Connectivity manipulation and degree of freedom
numbering are the main global operations. Aspects of the numerical integration and dif-
ferentiation are discussed here briefly. Detailed analysis of the local and global operations,
and the appropriate application of boundary conditions, are presented in [10].

The numerical integration in the tetrahedron domain T 3 = {(ξ, η, ζ) | −1 ≤ ξ, η, ζ ; ξ+
η+ ζ ≤ −1} uses the collapsed transformation illustrated in Figure 2 which are expressed
by the following relations

a = 2
(1 + ξ)

(−η − ζ)
− 1, b = 2

(1 + η)

(1 − ζ)
− 1, c = ζ, (1)

For the linear and non-linear elasticity problems, the following general expression has
to be integrated

∫

T 3

u(ξ, η, ζ)dξdηdζ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

u(a, b, c)Jdadbdc , (2)

where the Jacobian J of the R3 −→ T 3 transformation is given by

J =
∂(ξ, η, ζ)

∂(a, b, c)
=

(

1 − b

2

)(

1 − c

2

)2

. (3)
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Figure 2: Mapping between hexahedron and tetrahedron domains [15].

The numerical integration of (2) from the tensorial product of one-dimensional quadra-
ture rules is

∫ 1

−1

∫ 1

−1

∫ 1

−1

u(a, b, c)

(

1 − b

2

) (

1 − c

2

)2

dadbdc

=

Q1−1
∑

i=0

wi

{

Q2−1
∑

j=0

wj

{

Q3−1
∑

k=0

wku(ai, bj , ck)

(

1 − bj
2

) (

1 − ck
2

)2
}}

, (4)

where ai, bj and ck are tensorial-based coordinates of the Q1, Q2 and Q3 quadrature points
in each spatial direction a, b and c, respectively; wi, wj and wk are the respective weights
of the Gauss quadrature.

The Gauss-Jacobi quadrature is defined by [10]

∫ 1

−1

(1 − z)α(1 + z)βf(z)dz =

Q−1
∑

i=0

wα,β
i f(zα,β

i ), (5)

where wα,β
i and zα,β

i are the weights and coordinates of the integration points for an
appropriate selection of the weights α and β of the Jacobi polynomial. For α = β = 0,
the Gauss-Legendre quadrature is obtained. The boundary points of the domain may
be included in the numerical integration when using the Gauss-Jacobi quadrature with
Lobatto and Radau distributions of points [10].
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Based on the previous definition, the number of integration points for the consistent
integration of (4) may be reduced with the inclusion of the Jacobian terms in the weights.
For that purpose, (α = 0, β = 0), (α = 1, β = 0) and (α = 2, β = 0) are selected,
respectively, in the directions a, b and c. The integration on T 3 given in (4) may be
written as

∫ 1

−1

∫ 1

−1

∫ 1

−1

u(a, b, c)

(

1 − b

2

) (

1 − c

2

)2

dadbdc

=

Q1−1
∑

i=0

w0,0
i

{

Q2−1
∑

j=0

ŵ1,0
j

{

Q3−1
∑

k=0

ŵ2,0
k u(a0,0

i , b1,0
j , c2,0

k )

}}

, (6)

where

ŵ1,0
j =

w1,0
j

2
and ŵ2,0

k =
w2,0

k

4
. (7)

The Gauss-Radau distribution is used in the η, ζ directions while the Gauss-Lobatto
points are considered for the ξ direction as illustrated in Figure 3. This selection avoids
multiple points on the vertices (ξ = −1, η = −1, ζ = 1) and (ξ = −1, η = 1, ζ = 1) and
along the edge that connects these vertices. Therefore, the calculation on the singular
points of the collapsed transformation is avoided. Although numerical perturbations
would be expected when using singular integration points, [10] gave a theoretical proof
demonstrating the boundness of the collapsed transformation over the singular points.
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0
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Figure 3: Quadrature points for the local tetrahedron T 3 with Q1 = Q2 = Q3 = 7 and
Gauss-Lobatto points in the ξ-direction and Gauss-Radau points in the η and ζ-directions
[10].
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The differential operators of the linear and non-linear elasticity problems are applied to
the shape functions of the approximation space and evaluated on the integration points for
each finite element of the mesh. The collocation differentiation may be used to calculate
the derivatives of the shape functions on the integration points [10]. It is based on
the representation of arbitrary polynomial functions by Lagrange polynomials defined
on the quadrature coordinates. The representation is a simple change of basis for the
same polynomial space. Based on that, the local polynomial approximation for a one-
dimensional function u(ξ) is written as

u(ξ) =

P1
∑

p=0

ûpφp(ξ) =

P1
∑

p=0

uphp(ξ) (8)

where φp(ξ) are the interpolation functions of order ≤ P1, hp(ξ) are the Lagrange poly-
nomials defined on the P1 + 1 integration points and ûp and up are the coefficients of the
approximation in the original and transformed basis, respectively. Due to the collocation
property of the Lagrange polynomials (i.e., hi(ξj) = δij), the coefficients up are the values
of the approximated function on the integration points, i.e., up = u(ξp). Therefore, it is
possible to express the derivative of the approximated function as

∂u

∂ξ
(ξ) =

P1
∑

p=0

up

∂hp

∂ξ
(ξ) =

P1
∑

p=0

u(ξp)
∂hp

∂ξ
(ξ). (9)

For the reference element T 3, which is mapped from the hexahedron R3, the polynomial
expansion of the function u(a, b, c) in terms of Lagrange polynomials in the tensorial
coordinates a, b and c is

u(a, b, c) =

P1,P2,P3
∑

p,q,r=0

ûpqrψpqr(a, b, c) =

P1
∑

p=0

P2
∑

q=0

P3
∑

r=0

upqrhp(a)hq(b)hr(c), (10)

where ψpqr(a, b, c) = φpqr(ξ, η, ζ) are the basis functions represented in the tensorized space
(a, b, c) and hj (for j = p, q, r) are the Lagrange polynomials of order Pi (i = 1, 2, 3).

Analogously to equation (9), the partial derivatives of the approximated function are

∂u

∂a
(a, b, c) =

P1
∑

p=0

P2
∑

q=0

P3
∑

r=0

upqr

∂hp(a)

∂a
hq(b)hr(c), (11)

∂u

∂b
(a, b, c) =

P1
∑

p=0

P2
∑

q=0

P3
∑

r=0

upqrhp(a)
∂hq(b)

∂b
hr(c), (12)

∂u

∂c
(a, b, c) =

P1
∑

p=0

P2
∑

q=0

P3
∑

r=0

upqrhp(a)hq(b)
∂hr(c)

∂c
. (13)
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The evaluation of the previous expressions on the integration points using the collocation
property of the Lagrange polynomials gives

∂u

∂a
(ai, bj , ck) =

P1
∑

p=0

upjk

∂hp(a)

∂a

∣

∣

∣

∣

ai

, (14)

∂u

∂b
(ai, bj , ck) =

P2
∑

q=0

uiqk

∂hq(b)

∂b

∣

∣

∣

∣

bj

, (15)

∂u

∂c
(ai, bj , ck) =

P3
∑

r=0

uijr

∂hr(c)

∂c

∣

∣

∣

∣

ck

. (16)

The procedures for the collocation differentiation, which result from the evaluation of
the derivatives of Lagrange polynomials, are discussed in [10] and based on the distri-
bution of points for the Gauss-Jacobi, Gauss-Legendre, Gauss-Radau and Gauss-Lobatto
quadratures.

From expressions (14) to (16), the chain rule is applied to obtain the local partial
derivatives with respect to the cartesian coordinates (ξ, η, ζ) of the reference element T 3,
i.e.,

∇ =















∂

∂ξ
∂

∂η
∂

∂ζ















=

















4

(1 − b)(1 − c)

∂

∂a
2(1 + a)

(1 − b)(1 − c)

∂

∂a
+

2

(1 − c)

∂

∂b
2(1 + a)

(1 − b)(1 − c)

∂

∂a
+

(1 + b)

(1 − c)

∂

∂b
+

∂

∂c

















. (17)

For the cases b = 1 or c = 1, the operator ∇ becomes singular. This problem may be
avoided using Gauss-Radau quadrature along the b and c-directions.

3 Fully Tensorial Bases for Triangles and Tetrahedra

The shape functions for triangles may be written as the tensorial product of one-dimensional
bases expressed in natural coordinates as [3]

Npqr(L1, L2, L3) = φp(L1)φq(L2)φr(L3). (18)

Generally, 0 ≤ p ≤ P1, 0 ≤ q ≤ P2 and 0 ≤ r ≤ P3 and P1, P2 and P3 are the degrees of
the polynomial bases along the area coordinates L1, L2 and L3, respectively.

As indicated in Figure 4, the vertex modes are given by

NP100(L1, L2, L3) = φP1
(L1)φ0(L2)φ0(L3),

N0P20(L1, L2, L3) = φ0(L1)φP2
(L2)φ0(L3), (19)

N00P3
(L1, L2, L3) = φ0(L1)φ0(L2)φP3

(L3).
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The edge modes (0 < p, q, r < P and P1 = P2 = P ) are

Npq0(L1, L2, L3) = φp(L1)φq(L2)φ0(L3),

Np0r(L1, L2, L3) = φp(L1)φ0(L2)φr(L3), (20)

N0qr(L1, L2, L3) = φ0(L1)φq(L2)φr(L3).

Finally, the general expression for the face modes (0 < p, q, r < P − 1) is

Npqr(L1, L2, L3) = φp(L1)φq(L2)φr(L3). (21)

q

r

P

P P

0 0

3

1 2

p

0
(a) Indices p, q and r.

V

A

V

F

A

A

V

3

3

1
1

2

2

1

(b) Topological entities.

(0,0,P )

(0,q,r)

(0,P ,0)(p,q,0)1(P ,0,0)

(p,q,r)
(p,0,r)

2

3

(c) Entities and indices p, q and r.

Figure 4: Association of topological entities and indices p, q, r for triangles.

Hierarchical and non-hierarchical nodal bases may be constructed, respectively, using
the following definitions

φp(L1) =

{

1 p = 0

L1L
(P1−2)
p (L1) 0 < p ≤ P1

, (22)

φp(L1) =







1 p = 0
L1 p = P1

L1L
(P1−2)
p 0 < p < P1

. (23)

The truncated Lagrange polynomial is defined by [3]

L(P1−2)
p (L1) = −4

P1−1
∏

q=1,q 6=p

(L1 − L1q
)

P1
∏

q=0,q 6=p

(L1p
− L1q

)

.
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Modal basis for triangles are obtained using

φp(L1) =







1 p = 0
L1 p = P1

2L1P
α1,β1

p−1 (2L1 − 1) 0 < p < P1

. (24)

Similar expressions are defined for the L2 and L3 directions.
The extension for tetrahedra is direct and the shape functions are given by

Npqrs(L1, L2, L3, L4) = φp(L1)φq(L2)φr(L3)φs(L4), (25)

The indices p, q, r, s are indicated in Figure 5.
Due to their tensorial nature, the non-hierarchical bases obtained using the previous

procedures have a natural C0-continuity [3]. In addition, very efficient tensorial based
integration rules may be used.

s
q

4
p r

P

P

1

P2

3P

(a) Indices p, q, r.

V

V

V

V

A

A A

A A

A

F

F

1
FF

1

4
2

3

1

2

3

4

2

5

4

3
6

(b) Topological enti-
ties.

)

(

(

)

(

(
(

0,P ,0 0(

)

)

)

)

)

)

(

2

3 4

)

( )

(

(

p,0,r,0

0,0,0,P 

p,0,0,s
p,q,0,0

P ,0,0,0

0,q,0,s

0,0,P ,0

0,q,r,0

1

0,0,r,s

(c) Vertices and edges.

(0,q,r,s)

(p,q,r,0)
(p,0,r,s)

(p,q,r,s)
(p,q,0,s)

(d) Faces and volume

Figure 5: Association of topological entities and indices p, q, r, s for tetrahedra.

4 Results

4.1 Comparison of the Bases

In this section, the Sherwin-Karniadakis and the fully tensorial bases for triangles are
compared in terms of the condition numbers of the local mass and stiffness matrices
for the Laplace operator. The results are shown in Figure 6 for one local element with
and without the Schur’s complement. Figure 7 shows the conditioning for a mesh of
eight elements for the tensorial basis, with and without the Schur’s complement. For the
tensorial basis, α = 0 and β = 2 were used due to the best conditioning of the element
matrices.

The behavior of the tensorial basis is similar to the Sherwin-Karniadakis basis, but for
the stiffness matrix the last basis is superior for non-distorted elements. The condition
numbers for Basis 1 with odd degrees increase remarkably.
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(b) Stiffness.

Figure 6: Condition numbers of the mass and stiffness matrices for the Sherwin (sk) and
Bittencourt bases.
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Figure 7: Condition numbers of the mass and stiffness matrices for a mesh of 8 triangles.
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(a) Mesh with 23 elements. (b) Boundary conditions.

Figure 8: Non-linear cantilever beam.

4.2 Non-linear elasticity

The Spectral/hp FEM will be applied to the problem of large deformation of a cantilever
beam submitted to its own weight and a constant surface load [7]. The mesh used of
23 tetrahedra, the boundary conditions and surface load are illustrated in Figure 8. The
dimensions of the beam are c = 3.0m× l = 0.3m× h = 0.05m. The material properties
are ρ = 250.0 kg/m3, E = 4.0 × 108N/m2 and ν = 0.3. The surface load intensity
is 100.0N/m2 and applied in the negative y-direction. The solutions were obtained for
p = 1, . . . , 8 using the Newton-Raphson method with one load step. The energy stop
criterion in the Euclidian norm were used with 10−4 precision. The results are compared
for one node of the mesh with the non-linear formulation of the ANSYS software based
on the h-version and taking the equivalent numbers of degrees of freedom for the two
formulations.

Figures 9(a) and 9(b) show the convergence behaviour of the solutions in the non-
linear cantilever beam when the approximation space is refined for p = 1, . . . , 8. The
convergence is indicated, respectively, in terms of the logarithmic and percentual of the
relative error in the energy norm versus the number of degrees of freedom. Figure 9(a)
also shows the comparison of the relative errors for the h and p versions of FEM. The
results for the h-version were extrapolated based on the solutions calculated for meshes
of 23, 33, 64 and 108 elements.

As in the linear case, it may be observed from Figure 9(a) that the p-version has an
exponential convergence rate for the non-linear cantilever beam. The rate of convergence
of the p-version is very superior when compared with the results obtained for h-version.
For non-linear problems, the larger stiffness produced by the linear Lagrange elements is
more critical when compared to the linear case.

The estimate of the energy of the exact solution for the mesh with 23 elements using
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Figure 9: Error behaviour for the non-linear cantilever beam.
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Figure 10: Convergence of Newton-Rhapson iterations for the three convergence criteria
versus the total number of iterations and p = 5.

the a-posteriori estimate given [16] is

Π(u) ≈ 21.19735351. (26)

For the mesh with 23 elements illustrated in Figure 8(a) and polynomial order p = 5,
Figure 10 shows the behaviour of the non-linear solution obtained with 5 load steps
according to the Euclidian norm of the load, displacement and energy criteria of the
Newton-Rhapson procedure [4]. It may be observed that the convergence criteria are not
absolutely equivalent in terms of the norms of their respective expressions used to measure
convergence. The energy criterion has an intermediate behaviour and is situated between
the limits of the displacement and load criteria.

Figure 11 shows the displacements in the y-direction for one node of the mesh obtained
from the linear and non-linear models. Due to the non-linear stiffness, the displacement
at the end of each load step is lower than that of the linear case.
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Figure 11: Load steps versus the nodal y-displacement for the linear and non-linear
models.

Table 1 presents the comparison of the displacement components for one node of the
mesh calculated using the ANSYS program and the Spectral/hp FEM. Two different
meshes were used. The p-mesh has 23 tetrahedral and polynomial order p = 5. The
ANSYS mesh has 303 quadratic tetrahedral. For both meshes, the number of degrees of
freedom is 2100. The displacement and load convergence criteria were used simultaneously
in the ANSYS program. The precisions were 10−3 and 10−6 for the load and displacement
convergence criteria, respectively. For the Spectral/hp FEM, the energy criterion was
used with 10−4 precision. The results have a reasonable agreement which shows that the
Spectral/hp Methods are suitable also for non-linear solid mechanic problems.

Table 1: Comparison of the nodal solution for the non-linear cantilever beam obtained
from the ANSYS program and the Spectral/hp Method.

Displacement u [m]

Mesh DOFs Node Formulation ux uy uz

h 2100 5 ANSYS -0,46644e-01 -0,52177 0,50587e-04
p = 5 2100 5 Spectral/hp -0,46630e-01 -0,52143 -0,13399e-03

5 Conclusions

Traditionally, high-order methods have been used in fluid mechanics. This paper presented
two high-order finite element bases that may be used effectively to problems of solid
mechanics. The behavior of the two bases are similar in terms of the conditioning of the
local matrices. The fully tensorial basis has been implemented in a C++ software basis
and will be applied to impact problems.
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