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Abstract. Steady turbulent natural convection in a two-dimensional horizontal cylindrical annulus cavity totally filled 
with porous material isothermally heated from the inner cylinder and cooled from the outer is analyzed numerically 
using the finite volume technique in a generalized coordinate system. Governing equations are written in terms of 
primitive variables and are recast into a general form. The well-established SIMPLE, method of Patankar&Spalding, 
1972, is followed for solving the momentum equations. The iterative line-by-line SIP procedure of Stone, 1968 is used 
for relaxing the equations. Based on numerical predictions, the effects of Rayleigh number on flow pattern and energy 
transport are investigated for Rayleigh numbers ranging from 101 to 5x102. The turbulence model used is the k-ε 
standard with wall function 
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1. Nomenclature 
 
Ai Interfacial area 
cF Forchheimer coefficient 
C1,2,3,k,µ Model constants 
cp Specific heat 
g Gravity acceleration 
K Permeability 
k Turbulent kinetic energy 
kf Fluid thermal conductivity 
ks Solid thermal conductivity 
n unit vector 
Nu Nusselt number, 
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r cylinder radius 
R ro/ri 
Ra* Rayleigh number, Ra*= νρβ effif kTKrcg ∆)(  
T Temperature 
u microscopic velocity 
uD Darcy velocity 
 
Greek characters 

β Thermal expansion character 
∆V Representative elementary volume 
ε Dissipation rate of k 
µ Dynamic viscosity 

φ
µ t  Macroscopic turbulent viscosity 

ν Kinematic viscosity 
ρ Density 
σk,ε,T Turbulence model constants  
φ Porosity 
 
Special characters 

ϕ  Generic quantity 
ϕ  Temporal average 
ϕ′  Temporal fluctuation 

i〉ϕ〈   Intrinsic average 
v〉ϕ〈  Volumetric average 

ϕi  Spatial deviation 
( )effϕ  effective value, sf )1( ϕφ−+φϕ  
( ) f,s  Solid and fluid properties 
( )ref  Reference value 
( ) C,H  Hot and cold 

( )T  Transpose 
( ) o,i  inner, outer 
 

 
2. Introduction 
 

Buoyancy-driven flows in concentric and eccentric annuli are a class of problem that currently receives considerable 
attention from researchers in many fields of applications. Nuclear reactor insulation systems, aircraft cabin insulation 
equipment, furnaces, solar collectors are some examples of its applications. 

Natural convection occurs as a result of gradients in density due to variations in temperature or mass concentration. 
Free convection in a infinite horizontal layers of fluid heated from below has received extensive attention since 
beginning of 20th century, when Bérnard, 1901 observed hexagonal roll cells upon the onset of convection in molten 
spermaceti with a free upper surface. 

The work of Rayleigh, 1926 was the first one to compute a critical value, Rac, for the onset of convection. The 
accepted theoretical value of this dimensionless group is 1708 for rigid upper and lower surfaces. 

The study of natural convection in enclosures still attracts the attention of researchers and a significant number of 
experimental and theoretical works have been carried out mainly from the 70’s. 
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The first basic study on natural convection in cylindrical annuli was carried out by Beckman, 1931 and extended by 
Kraussold, 1934. Further, a very comprehensive analysis has been made on the same geometry by Kuehn & Goldstein, 
1978. They have conducted both numerical simulation using finite elements technique and experimental study using a 
Mach-Zehnder interferometer. Application of other type of finite differences method with ADI numerical solution has 
also been reported by Charrier-Mojtabi et al, 1979 who solved for laminar flow in horizontal concentric annuli using 
cylindrical polar coordinates. 

Small eccentric annuli were studied in the work of Yao, 1980, using an expansion in terms of the double series of 
eccentricity and Rayleigh number for small values of Ra. The work of Cho et al, 1982 extended the knowledge on the 
natural convection heat transfer in horizontal cylindrical annuli. Therein, numerical analysis has been carried out using 
finite difference method in a bipolar coordinate system based on successive-over-relaxation iteration method. 

Recent work of Kenjeres & Hanjalic, 1995, reports modeling and computational studies of natural convection in 
concentric and eccentric annuli by means of several variants of the algebraic stress model, based on the expression for 
turbulent heat flux iuθ obtained by truncation of the second-moment transport equation for this correlation. Various 
levels of closure were used including the low-Re number form of the k-ε model and a version in which differential 
transport equations are solved for the temperature variance 2θ  and its decay rate θε . 

Natural convection in cylindrical annular geometry filled with porous material has been studied by distinct 
numerical approaches, such as the finite-difference method reported by Caltagirone, 1976 and Burns & Tien, 1979. 
Finite element method is also found in the work of Charrier-Mojtabi et al, 1987 and the Galerkin spectral method in the 
work of Charrier-Mojtabi & Caltagirone, 1980, Rao et al, 1987 and Himasekhar & Bau, 1988. Charrier-Mojtabi et al, 
1991, have shown that the Fourier-Chebyshev method gives better accuracy than does the full Fourier-Galerkin method 
for the description of two-dimensional multicellular flows. 

Experimental studies using the Christiansen effect to visualize the thermal two-dimensional fields have been 
carried out by Cloupeau & Klarsfeld, 1973. In contrast with analytical studies, experiments have only unveiled 
unicellular flows. Additional experimental work of Caltagirone, 1976 and Charrier-Mojtabi et al, 1991 have shown the 
existence of various convective regimes. 

Following this path, the work of Braga & de-Lemos, (2002a), presented results for laminar natural convection in a 
square cavity heated on the sides. Later, Braga & de-Lemos, (2002b) extended their results for considering laminar 
natural convection in a horizontal annular cavity. Turbulent regime in horizontal cylindrical annuli, both for concentric 
and eccentric cases, was also calculated (Braga & de-Lemos, (2002c) ). Further, the study of natural convection in 
cavities completely filled with porous material was reported in the work of Braga & de-Lemos, (2002d). In that work 
the two geometries mentioned above, namely square and annular cavities, were considered. Further, the work of Braga 
& de-Lemos, (2002e) presented results for both laminar and turbulent flows in a square cavity heated from the left side 
and cooled from the opposing side for both clear and porous media. Results were compared with numerical data 
available in the literature. The turbulence model adopted was the standard k-ε with wall function. 

Extending further the foregoing work on natural convection in clear and porous enclosures, this work presents 
results for both laminar and turbulent regime in a concentric horizontal cylindrical annulus completely filled with 
porous material. Results are compared with numerical data available in the literature. 

One should mention, first of all, that studies on turbulent natural convection in porous media are not commonly 
available in the literature. With this limitation in mind, the main objective of this paper is to validate a numerical tool 
for simulating natural convection first in laminar regime and then in turbulent regime. 

 
3. The Problem Considered 
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cylinder and cooled at the outer surface. The non-slip condition is applied to the velocity field at all walls and the 
resulting flow is treated as steady. 
 
4. Governing Equations 

 
The equations used herein are derived in details in the work of Pedras & de-Lemos, 2001 and Rocamora & de-

Lemos, 2000, and for that no specific derivation is here repeated. Basically, for porous media analysis, a macroscopic 
form of the governing equations is obtained by taking the volumetric average of the entire equation set. In that 
development, the porous medium is considered to be rigid and saturated by an incompressible fluid. 

The macroscopic continuity equation is given by, 
 

 0=⋅∇ Du  (1) 
 

where the Dupuit-Forchheimer relationship, i
D 〉〈= uu φ , has been used and iu〉〈  identifies the intrinsic (liquid) average 

of the local velocity vector u . 
This work extends the development in Pedras & de-Lemos, 2001, in order to include the buoyancy term in the 

governing equations. Accordingly, the Boussinesq hypothesis can be written as, [ ])(1 refref TT −−= βρρ . Substituting 
this term in the momentum equation, the buoyancy term reduces to, 

 
)( refref TTg −βρ  (2) 

 
Applying the volumetric average one has, 
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Therefore, the buoyancy term becomes, 

 
( )ref

i
ref TTg −〉〈φβρ φ  (4) 

 
With the Macroscopic Buoyancy Term given by 4, the macroscopic time-mean Navier-Stokes (NS) equation for an 
incompressible fluid with constant properties is given as, 
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Further, when treating turbulence with statistical tools, the correlation uu ′′ρ−  appears after application of the time-
average operator to the local instantaneous NS equation. Applying further the volume-average procedure to this 
correlation results in the term iuu 〉′′〈ρφ− , as can be seen in the equation 5 above. This term is here recalled as the 
Macroscopic Reynolds Stress Tensor (MRST). A model for the MRST in analogy with the Boussinesq concept for 
clear fluid can be written as: 
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2
1  (7) 

is the macroscopic deformation tensor, ik〉〈 is the intrinsic average for k and 
φ

µ t is the macroscopic turbulent viscosity. 

The macroscopic turbulent viscosity, 
φ

µ t , is modeled similarly to the case of clear fluid flow and a proposal for it was 
presented in Pedras & de-Lemos, 2001 as, 
 

i

i

t
kc
〉〈
〉〈=

ε
ρµ µφ

2

 (8) 



 

In a similar way, applying both time and volumetric average to the microscopic energy equation, for either the 
fluid or the porous matrix, two equations arise. Assuming further the Local Thermal Equilibrium Hypothesis, which 
considers ii

s
i

f TTT 〉〈=〉〈=〉〈 , and adding up these two equations, one has, 
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where to each underscored term on the right hand side of Eq. (9), the following significance can be attributed: I- 
Tortuosity - based on the stagnant heat path inside the porous medium, II-Turbulent Heat Flux - due to the 
macroscopic time fluctuations of the velocity and the temperature, III-Thermal Dispersion - associated to the spatial 
deviations of the time averaged microscopic velocity and temperature. Note that this term is also present in laminar 
flows in porous media., IV-Turbulent Thermal Dispersion - due to both time fluctuations and spatial deviations of the 
microscopic velocity and temperature. 
 A modeled form of equation (9) has been given in detail in the work of de-Lemos & Rocamora, 2002, and 
Rocamora & de-Lemos, 2002, as, 
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where, effK , given by: 
 

[ ] tdispdispttorsfeff kk ,)1( KKKKIK ++++−+= φφ  (11) 

 
is the effective conductivity tensor. In order to be able to apply Eq. (10), it is necessary to determine the 
conductivity tensors in Eq. (11), i.e., torK , tK , dispK  and tdisp ,K . Following Kuwahara & Nakayama (1998), 
this can be accomplished for the tortuosity and thermal dispersion conductivity tensors, 

torK  and 
dispK , by 

making use of a unit cell subjected to periodic boundary conditions for the flow and a linear temperature 
gradient imposed over the domain. The conductivity tensors are then obtained directly from the microscopic 
results for the unit cell (see Kuwahara & Nakayama (1998) for details on the expressions here used). 
 The turbulent heat flux and turbulent thermal dispersion terms, 

tK  and 
tdisp ,K , which cannot be 

determined from such a microscopic calculation, are modeled here through the Eddy diffusivity concept, 
similarly to Nakayama & Kuwahara (1999). It should be noticed that these terms arise only if the flow is 
turbulent, whereas the tortuosity and the thermal dispersion terms exist for both laminar and turbulent flow 
regimes. 
 Starting out from the time averaged energy equation coupled with the microscopic modeling for the 
‘turbulent thermal stress tensor’ through the Eddy diffusivity concept, one can write, after volume averaging, 
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where the symbol 
φ

ν t  expresses the macroscopic Eddy viscosity, 
φφ

νρµ tft = , given by (8) and σT is a 
constant. According to equation (12), the macroscopic heat flux due to turbulence is taken as the sum of the 
turbulent heat flux and the turbulent thermal dispersion found by Rocamora & de-Lemos, 2000. In view of 
the arguments given above, the turbulent heat flux and turbulent thermal dispersion components of the 
conductivity tensor, 

tK  and 
tdisp ,K , respectively, are expressed as: 
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In the equation set shown above, when the variable φ=1, the domain is considered as a clear medium. For any other 
value of φ, the domain is treated as a porous medium. 
 
5. Numerical Method and Solution Procedure 

The numerical method employed for discretizing the governing equations is the control-volume approach with a 
collocated grid. A hybrid scheme, Upwind Differencing Scheme (UDS) and Central Differencing Scheme (CDS), is 
used for interpolating the convection fluxes.  



 

 The well-established SIMPLE algorithm (Patankar & Spalding, 1972 ) is followed for handling the presure-velocity 
coupling. Individual algebraic equation sets were solved by the SIP procedure of Stone, 1968. 
 
6. Turbulence Transport Equations 

 Transport equations for 2uuk ii 〉′⋅′〈=〉〈 and ( ) ρ〉′∇′∇〈µ=〉ε〈 iTi u:u  in their so-called High Reynolds number 
form are proposed in Pedras & de-Lemos, 2001 as: 
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where c1, c2 , c3 and ck are constants, ( )D

ii uuuP ∇:〉′′〈ρ−=  is the production rate of ik〉〈 due to gradients of Du  and 

K
kcG D

i

k
i ||u〉〈= φρ is the generation rate of the intrinsic average of k due to the action of the porous matrix. 

This work extends the development therein in order to include the buoyancy production rate term in the turbulence 
model equations. For clear flows the buoyancy contribution to the k equation reads,  
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Applying the volumetric average one has, 

∫
∆ ∂

∂β
σ
ν−

∆∆
∆=〉

∂
∂β

σ
ν

〈−
fV t

t

f

fv

t

t dV
y
Tg

V
1

V
V

y
Tg  (17) 

 
The final form of the buoyancy production rate term is then, 
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7. Results and Discussion 
 
7.1. Laminar Flow Solution 

Many workers have focused their attention on the bifurcation and stability of the numerical solution. This work has 
not this intention and its objective is to validate the numerical tool comparing the present results with others numerical 
and experimental works. Calculations were then performed for half domain using a 50x50 grid on the geometry shown 
in Fig. 1. 

According Caltagirone, 1976, there are three convection regimes. The first one is where the Rayleigh number 
Ra*= νρβ effif kTKrcg ∆)(  is less or equal than 8, convective phenomena are very little developed and heat transfer occurs 
only by conduction. This regime will be called pseudo-conduction. The second one is in the interval 8<Ra*<65 and 
onvective currents are found to be steady. The fluid warms up on contact with the inner cylinder and fall along the outer 
surface. The last regime is for Ra*>65 where a new type of evolution appears. Perturbations occur in the upper part of 
the annular layer and are shown by fluctuations in temperature. Experimental observations suggest that, for high 
Rayleigh numbers, the fluid flow domain can be divided into five regions, (Himasekhar & Bau, 1988) as shown in Tab 
1. 

Table 1 – Domain important regions 
Region Description 
Inner boundary layer A thin thermal layer near the inner cylinder in which gradients in the angular direction are 

negligible compared to those in the radial direction. 
Outer boundary layer A thin thermal layer near the outer cylinder in which gradients in the angular direction are 

negligible compared to those in the radial direction. 
Plume Exits along the vertical line of symmetry above the inner cylinder and joins the inner and outer 

thermal layers. 
Stagnant region A region, located beneath the inner cylinder, in which the buoyancy forces inhibits fluid 

motion and the heat transfer is purely by conduction. 
Core region The one bounded by the other four regions. 



 

 
. Figure 2 shows calculated laminar isotherms and streamlines for a concentric annular cavity, heated from the inner 

cylinder and cooled at the outer surface, completely filled with porous material for Ra*=2.5x10, Ra*=2x102 and R=2. 
The figures show a good agreement of the present simulations with the work of Caltagirone, 1976, reproducing the 
basic features of the flow. 

Table 2 shows, for some Rayleigh numbers, the average Nusselt number Nu  on the heated inner cylinder. It is seen 
from this table that the agreement between the present and previous results seems to be reasonable. The heat transfer 
coefficient is seen to increase with Ra* distorting the isotherms as convection becomes dominant although the 
streamlines do not presents such intense variations, see Fig. 2. 
 

Table 2. Average Nusselt number Nu  for Rayleigh numbers ranging from 25 to 500. 
 
 Ra*     
 25 100 150 200 500 

Caltagirone, 1976 1.0993 1.8286 - 2.6256 4.1983 
Charrier-Mojtabi, 1997 -  1.8670 2.3090 - - 
Present results – laminar flow solution 1.1079 1.8602 2.2961 2.6662 4.2306 

 
7.2. Turbulent Flow Solution 

Calculations for turbulent flow were performed for half domain using a 50x50 grid on the geometry shown in Fig. 1. 
Figure 3 shows the streamlines and isotherms of a horizontal concentric annuli cavity completely filled with porous 
material heated from the inner cylinder and cooled from the outer for Ra*=2.5x10 and 2x102 and for R=2.  

When the standard k-ε model is used for low Ra* values, the results do not represent an exact laminar solution (with 
zero turbulent viscosity) since the transport equation set (1)-(5)-(10)-(14)-(15) is valid for high Re flows and is solved 
with the wall function approach for handling the wall proximity. Therefore, below a certain critical Rayleigh number, 
the standard k-ε model gives a turbulent viscosity, which is close to zero everywhere and the solution can be interpreted 
as an approximation of the laminar flow regime. But, above this critical value, the turbulent viscosity suddenly 
increases and a turbulent solution is obtained. 

Comparing the laminar and the turbulent solution for the same Ra* numbers (Figs 2 and 3), one can note that for the 
smaller Ra*, Fig. 3(a), both cases (laminar and turbulent flow solutions) does show remarkable differences and the flow 
pattern remains almost the same with the center of the streamlines a little dislocated downward for the turbulent case. 
For the higher Ra* number, the isotherms presented in Fig. 3(b) in the region located beneath the inner cylinder show a 
similar behavior when compared with those from the laminar case, in which the buoyancy forces inhibits fluid motion 
and the heat transfer is purely by conduction. However, at the upper part of the annulus, Fig. 3(b) does not show a 

  
          (a)                                 (b)                                 (c)                                  (d)   
  

Figure 2 – Laminar solution. Isotherms and Streamlines for a Ra*=2.5x10, Ra*=2.0x102 and R=2; (a), (b): 
Present results;(c), (d): Caltagirone, 1976. 

                          
(a) (b) 

Figure 3. Turbulent solution. Isotherms and Streamlines for R=2: a) Ra*=2.5x10, b) Ra*=2.0x102 



 

plume above the inner heated cylinder as appears in the laminar case of Fig. 2(b). This is probably associated with the 
high levels of turbulent kinetic energy in such region, inducing a higher overall heat flux from the inner surface towards 
the outer cylinder. Figure 4 shows corresponding isolines of turbulent kinetic energy for Ra*=2.0x102 and R=2. The 
figure clearly shows that in the upper part of the annular region the turbulent kinetic energy presents its highest levels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Corresponding temperature profiles across the gap are presented in Figure 5. The figure shows the behavior of the 

macroscopic temperature at the symmetry line above the inner cylinder for Ra*=2.0x102 and R=2, using laminar and 
turbulent flow solutions. As indicated by the figure, the turbulent solution shows a more gradual temperature 
distribution across the entire gap when compared with the one for the laminar case. The steeper temperature gradient at 
the inner wall indicates that more heat is transferred through the gap. This enhancement of heat transfer is coherent with 
the large values for k within that same region. 
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Figure 4. Isolines of turbulent kinetic energy for Ra*=2.0x102 and R=2. 
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 Nu for Rayleigh numbers ranging from 10 to 500. 

Ra*     
10 25 100 200 500 
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8. Conclusions 
 

This paper presented computations for simulation of laminar and turbulent natural convection in horizontal 
concentric annuli heated on the inner cylinder and cooled at the outer surface. The laminar results yielded generally 
satisfactory agreement with the numerical data available in the literature. For all case considered, there are a stagnant 
region below the inner cylinder. For turbulent cases, the isotherms above the inner heated cylinder for higher Ra* 
numbers has a gradual temperature distribution when compared with those from the laminar ones, probably due to the 
high levels of turbulent kinetic energy in such region, inducing a larger heat flux from the inner wall. Finally, as 
expected, the overall turbulent Nusselt numbers are higher than those from the laminar cases. 
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