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1. INTRODUCTION

Considering the macroscopic description of fluid flow, lattice gas models are to be
considered as lower-level  models based on the statistical behavior of a large set of particles
moving along the discrete directions of a regular lattice and colliding in lattice vertices.

In fact, there are important physical phenomena related to fluid flow that are difficult
to, or cannot, be described  by considering the only information given by the macroscopic
equations, at the macroscopic level. In these cases downscaling to a lower scale is, often,
necessary for the correct understanding and mathematical description of the particular
physical phenomena of interest.

Some of these phenomena, related to interfacial dynamics, are presented bellow
When two droplets of a fluid r are put very  close, Figure 1.1, long-range fields arising

from each one of the droplets attract molecules belonging to the second droplet, giving rise
to coalescence. Coalescence is a very difficult interfacial phenomenon, which can, only, be
fully described, in the molecular scale, related to interaction length of long-range forces.

(a) (b) (c)

Figure 1.1. Coalescence between two droplets.

Although very interesting from a physical point of view, droplet formation from a
dropper is a very difficult problem, when we consider classical discrete methods of fluid
mechanics. Droplet formation of mineral oil in water is pictured in Figure 1.2, showing a
sequence of photographs taken at 10 frames/s.

From a macroscopic point of view droplet’s shape time evolution is linked to the
competition it is subjected among gravity action, viscosity of the droplet fluid and
interfacial tension. In this way, interfacial forces hold the droplet until break-off, as droplet
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weight increases. Break-off starts with the development of a throat, which becomes thinner
in time and from where droplet fluid is pulled downward and redistributed horizontally by
viscous forces, giving an almost ellipsoidal shape to the falling droplet, with a major axis
oriented along horizontal direction.

Figure 1.2  Droplet formation.

Lattice gas models were, firstly, developed for single-phase flows based, mainly, on
cellular automata and on kinetic theory.  Two classes of models have been developed:
Boolean and lattice Boltzmann models.

Although kinetic theory dates from Bernoulli (1738), who tried to explain elasticity of
gases considering them as a set of particles in random motion, its main development
occurred in the second half of XIX century by Maxwell and Boltzmann. This was achieved
introducing probability theory in the study of N-body problem in classical Lagrangian
mechanics.

In fact, no general solution exists for the N-body problem when N is larger than 2.
Considering a gas as a set of a very large number N of material points, with

translational degrees of freedom, it is possible to use probability laws,  considering
f(r, c, t),

as a probability density function for the number of particles with velocities between c and c
+ dc found, at time t, inside an elementary volume dr of the physical space.

Considered as a continuous function, the velocity distribution function f(r, c, t) is
modified in the absence of external forces by the streaming of particles and by collisions in
r, c space. Its evolution is given by Boltzmann’s equation:

( )colltt ffcf ∂=∂+∂ αα  ,                                           (1.1)

where t∂  is a time derivative and α∂  means a spatial derivative.

Boltzmann’s equation has an H-theorem and an equilibrium solution, explaining
irreversibility of macroscopic behavior as due to inter-particle collisions. In this way,
collisions are considered to be the main mechanism responsible for dissipation phenomena
in fluids.

In the early XX century, Chapman and Enskog, simultaneously, formally retrieved
hydrodynamic transport equations from Boltzmann’s equation, by considering the first
statistical moments of the velocities distribution function (Chapman and Cowling, 1970):

          ( ) �=ρ∂+ρ∂ ββ vt )( ,                                                    (1.2)

          [ ] [ ]{ } [ ]{ })()()()()( ββαβααββαβαβα ∂κ∂+∂+∂µ∂+−∂=ρ∂+ρ∂ vvvpvvvt ,           (1.3)
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where v designates fluid velocity.
In the above equations: i) pressure p is directly related to mass density ρ by ideal gas

law, ii) first, µ, and second, κ , viscosity coefficients are given in terms of the collision term
in the Boltzmann’s equation and related to ideal gas behavior.

These two above remarks are very important in the context of lattice gas development.
In fact, it means that: a) a set of particles follow ideal gas law, when long-range interaction
are not considered; b) hydrodynamic equations are insensible to the details of collision
processes, which appear related, only, to the transport coefficients themselves µ and κ .

The last observation was the basis for the development of LGA models.

Boolean lattice gas automata models (LGA) are microscopic models based on
particles, which dynamics try to mimic the main overall dynamics of a large set of
molecules, preserving mass, momentum and, more recently, energy.

In Boolean models, a Boolean variable ni(X,T) is attributed to direction i of each site
X of a discrete lattice, at time step T, indicating the presence (ni=1) or absence (ni=0) of a
fluid particle, following an exclusion principle. For each time step, the dynamic evolution
of the model is given in two steps. In the first step, designated as collision step, the state of
site X is changed following collision rules conceived so as to preserve total mass and
momentum of the site. In the second step, called propagation step, particles are propagated
to the neighbor sites, in accordance with their direction at site X after collision step. The
use of such models to study and simulate fluid dynamics was firstly introduced by Hardy,
de Pazzis and Pomeau (1973, 1976), but it was only after 1986 that these models grew in
increased importance due to the work of Frisch et al. (1986, 1987) These authors formally
demonstrated that the dynamics of such models under certain conditions was described by
the Navier-Stokes equations for incompressible flows, and could be used to simulate such
flows. In fact, based on a square two-dimensional lattice, HPP model of Hardy et al.
(1973): i) does not have isotropic fourth-order tensors, such as viscosity and ii) preserves
spurious quantities, giving a non-physical behavior to the model. See also Wolfram
(1983,1984,1986).

The main contribution of Frish et al. (1986), was to demonstrate that hexagonal lattices
have the necessary number of degrees of freedom to give isotropic  fourth-order viscosity
tensor and the elimination of spurious invariants.  In three-dimensions, isotropy has been
investigated by d'Humières et al. (1986), who introduced the three-dimensional projection
of a four-dimensional lattice, the face-centered hypercubic  lattice (FCHC) as the simplest
lattice giving isotropy of  fourth-order tensors. FCHC lattices have 24 degrees of freedom.

Although very suitable from a computational point of view, regarding parallelism and
numerical stability, the use of Boolean variables has very serious limitations that may be
summarized by considering: i) non-physical terms in macroscopic equations due to
exclusion principle, ii) high noise/signal level, produced by excessively drastic transitions
and requiring spatial averages and iii) high transport coefficients.

For this reason, LGA models have been, gradually, replaced by Boltzmann, mesoscale
models, in practical applications, although some work is, very recently, being undertaken,
for reducing, or eliminating, these drawbacks.

At mesoscale, lattice Boltzmann equation (LBE) resulted from the statistical averaging
Ni = <ni> of a large set of realizations of Boolean evolution equation, considering
molecular-chaos hypothesis (McNamara and Zanetti, 1988). Fluctuations were drastically
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reduced in simulating Ni (X, T), but the remaining drawbacks of Boolean models were
preserved.  Higuera and Jimenez (1989) proposed the use of a linearized collision term,
further simplified by Qian et al. (1992) to give a single relaxation time model. In its present
form, LBE is  to be considered  as a mesoscale relaxation equation, which main collision
term does not follow Boolean transitions, but is written following some main fundamental
principles, such as mass and momentum conservation and considering lattice symmetries.

In addition of enabling the description of physical process that require downscaling,
lattice Boltzmann models present some computational features that can be forwarded to
persuade CFD practitioner to adopt  these models in simulating fluid flow: simplicity of the
algorithm, easy of dealing with complicated geometric boundaries and high level of
parallelism in the implementation.

This lecture is organized in the following manner. In Section 2, Boolean lattice gas
models are discussed. Section 3  is devoted to Boltzmann mesoscale models, based on LBE
relaxation equation. Section 4 gives a brief introduction to multibits and integers models.
Section 5 present a Boolean model based on field mediators for studying the flow of
miscible and immiscible fluids. Boltzmann's counterparts are presented in Sections 6 and 7.

2. BOOLEAN MODELS FOR MONOPHASIC FLOWS

2.1  Microscopic Dynamics
Consider a regular lattice, Figure 2.1, where each site X has bm neighbors. A Boolean

variable ni (X, T) is assigned to site X to indicate the presence (ni=1) or absence (ni=0) of a
particle in direction i at time T. Vector ci indicates the unitary velocity vector pointing in
direction i. A finite, at most br, number of, undistinguishable, rest particles is allowed to
populate site X. Let b= bm + br. Let S be the set of all possible states of a given lattice site.

Figure 2.1. A two-dimensional hexagonal lattice.

A given state s of S can be represented by the array:

          s=(so1,.. ,sobr, s1, ...,sbm) ,                                                      (2.1)
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where the first br bits indicate rest particles and the following bm bits indicate moving
particles, distributed along the bm lattice directions.

Microscopic evolution is described by the following equation:

          ni(X+ci, T+1)=ni(X,T) + ωi(no1,.. nobr, n1, ..,nbm) ,                               (2.2)

where ωi: (no1,.. nobr, n1, ..,nbm)→{-1,0,1}  represents the collision operator which can take
the values –1, 1 or 0, depending on the state (no1,.. nobr, n1, ..,nbm) of site X,  before the
collision.

Considering  ),( TXξ  to be a random number attributed to site X at time T and

)',(),( ssTXξα  to be the transition matrix changing state s to one of all possible post-collision

states s’, in accordance with  ),( TXξ , collision term can be written as
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2.2 Ensemble averages. Macroscopic behavior of  LGA model.

Lattice-gas models have three description levels. In the more detailed level, ni(X,T)
are described for every X and T. In general, this is too refined in the description of
macroscopic phenomena. A less detailed description is given by furnishing the expected
values Ni=<ni(X,T)>, obtained as ensemble averages over a large number of realizations. In
the third level, only the first moments of Ni are furnished for each X and T. In fact, in the
continuum limit, when Knudsen number is very small, it can be show that the first moments
of Ni are related between themselves through a closed system of equations, i.e., the
hydrodynamic equations.

Classically, in the framework of hydrodynamics, we try to solve this closed system of
equations and obtain numerical values for pressure, density and velocity fields. In LGA
conception, expected values Ni (X, T) result from several realizations of a given Boolean
model. Macroscopic equations are, then, obtained from the first moments of Ni. It can be
shown that, under certain restrictions, these moments satisfy classical hydrodynamic
equations (Frish et al., 1986).

Distribution Ni(X,T) is defined as the expected value of  ni(X,T), over an ensemble of
realizations, run using randomly chosen initial conditions and satisfies.

           Ni(X+ci, T+1)=Ni(X,T) + Ωi(No, N1, ..,Nbm) ,                                (2.4)

which is Boltzmann equation for the lattice, in discrete form. Since rest particles are
undistinguishable, No(X,T) means the probability of finding rest particles on site X at time
T, in several realizations.   Taking molecular chaos hypothesis into account, the collision
term can be written as:

Ωi(No, N1, ..,Nbm) =
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In the above equation,

A(s, s’)= <α(s, s’)>.               (2.6)

Using the semi-detailed balance condition,

∑ ∀=
s

s'       ,  1)'s,s(A     ,                                                      (2.7)

it can be shown that  Eq. (2.4) has an H-Theorem and an equilibrium solution ,
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N ,                           (2.8)

which is a Fermi-Dirac distribution, as a consequence of exclusion principle.
Due to the discrete nature of the model, a linear low velocity approximation is used,

written in terms of the density
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which can be used for finding constants α  and q.

This equilibrium solution can be written as

)u(Ouu)b1(
D

c
cc

f1

f21

b

b

c2

D
uc

bc

Db
1fN 3

r

2

ii2
m

2

4

2

i
m

2
o
i +


















δ−−







−
−++= βααββααα ,   (2.11)

for moving particles whereas for rest particles,
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In the above equations D is the Euclidean dimension of the lattice and f=ρ/b.

2.3 Lattice Gas Hydrodynamic Equations
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 The use of Chapman-Enskog method on the Ni evolution equation, Eq.(2.4), leads to
lattice gas hydrodynamic equations, in the limit of low Knudsen number, Kn and low Mach
number, M:

( ) 0u)(t =ρ∂+ρ∂ ββ  (2.13)

[ ] [ ] [ ])u()u()u())u,(p(uu)(g)u( 2
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=  is the square of  LGA sound speed. The first and the second viscosity

coefficients, respectively ν and η, are related to the eigenvalues of collision operator Ω.
Equations (2.13) and (2.14) differ from Navier-Stokes hydrodynamic equations: i) by the
inclusion of a g(ρ) dependence in the inertial term, breaking Galilean invariance, ii) by a
O(M2) additional term in the pressure equation, Eq. (2.16), considering U as a characteristic
macroscopic speed, in lattice units and taking M as the Mach number,  M =U/cs,  and iii) by
the inclusion of density ρ inside the spatial derivatives in the viscous terms.  In low Mach
numbers limit (Rothman and Zaleski, 1997), the incompressibility condition

0. =∇ u (2.17)

is recovered and the following momentum equations are found, in this limit :

αββαβαβα ∂∂+∂=∂ρρ+∂ u!�)p(uu)(g)u(! t , (2.18)

which are the correct Navier-Stokes equations, for incompressible flows, excepting by the
inclusion  of a g(ρ) factor in the inertial term. Considering Eq. (2.15), it can be seen that
g(ρ)→1 when the following two conditions are, simultaneously, satisfied.
a) Factor

1)f1/()f21( →−−  ,                                                  (2.19)
related to the fact that lattice effects due to exclusion principle are reduced, when reducing
lattice density.
b) Factor 
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meaning that lattice effects due to the use of a finite number of directions are reduced, when
increasing the number of lattice degrees of freedom, increasing br= b-bm for rest particles,
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for compensating factor D/(D+2)< 1 and/or working with three-dimensional lattice
projections of higher D hyper-spaces.

The first alternative is limited by noise increase in the simulations, requiring the use of
larger spatial averages. The second one is limited to computer resident-memory capacity, as
memory requirements increase with (br +1) 2bm.

Lattice effects can be, also avoided by rescaling variables u and p (Rothman and
Zaleski, 1997), which is a, presently, frequently used simulation strategy.

2.4 Sample application: prediction of intrinsic permeability of porous rocks: Santos
(2000), Santos et al. (a-b) (2000), Santos et al.(a) (2002).

At author’s knowledge, lattice-gas hydrodynamic models for flow through two and
three-dimensional artificially constructed porous microstructures were described by Chen et
al. (1991.b). Kohring (1991a-b), Kohring (1992), McCarthy (1994), and Gao and Sharma
(1994) introduced lattice-gas models for studying the flow through channels, random array
of solid obstacles and/or regular arrays of cylinders. Ginsbourg and Adler (1994),
Genabeek and Rothman (1999) and Bernabe and Olson (2000) produced detailed results
related to boundary location and to the influence of surface topography on the flow rate, for
flow inside channels with rough surfaces.

Lattice-Boltzmann method was applied for reconstructed three-dimensional porous
microstructure by  Ferreol and Rothman (1995) and by Singh and Mohanty (2000).

Boolean models are lower level models with respect to lattice Boltzmann. In present
application, the use of Boolean models is proposed for the prediction of intrinsic
permeability. In contrast with lattice-Boltzmann method, which is free from intrinsic noise,
Boolean models present, nevertheless, very attractive advantages from a computational
point of view, as simulations are performed with Boolean variables needing less resident
memory capability and reducing running time. Taking into account that intrinsic
permeability is a global property, spatial averages can be performed considering the whole
pore space. In addition,  ergodic hypothesis enables the use of unrestricted time averages.
In this presentation it is shown that, as a consequence of spatial and time averages,
reduction of intrinsic fluctuations of Boolean models, leads to the prediction of very stable
values of intrinsic permeability, when simulation is performed considering a sufficiently
great number of time steps.

2.4.1 Simulation scheme

Evolution equation, Eq. (2.2), is the basic algorithm used for simulating flow. At time
t=0, lattice particles are randomly distributed on the lattice sites. For each pre-collision
configuration s, post-collision configuration s’ is randomly chosen between those states s’
with the same mass and momentum. This is performed by using a transition table located in
computer resident memory and constructed, previously to simulation, following the
particular LGA model used. Model is based on a FCHC  lattice with b=24 (d’Humières et
al., 1986). In propagation step, each particle at direction i is propagated to the neighbor site
X+ ci.

At solid boundaries, particles that reached boundary sites are bounced back, at the next
time step. This is the bounce-back condition that is frequently used, avoiding flow slipping
at the boundary, and assuring adherence condition, u=0.
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In simulating incompressible flows, considering the state equation relating pressure to
density, pressure gradients can, only, be promoted, associated to density gradients, which
must, in turn, remain small. This problem is eschewed in conventional simulation by using
Navier-Stokes low Mach number, M, approximation. Nevertheless, in LGA simulation,
flow is the result of billiard balls collisions and incompressibility can only be assured by
working with small u  meaning small M=u/cs. It can be show that cs=0.7071, in present

Boolean model. In this way, in LGA simulation a pressure gradient can only be created
associated to a density gradient, which must be small, assuring M<<1 and avoiding
compressibility effects.

Three-dimensional representations of porous structure were obtained from two-
dimensional sections by using Liang et al. (1998) reconstruction method. Reconstruction is
based on a truncated gaussian stochastic simulation that preserves the first two moments of
phase-function Z(r), i.e., porosity ε and auto-covariance function RZ(u).

For simulating flow, present scheme uses periodic conditions and a pumping zone at
the beginning of the domain (Figure 2.1). Periodic conditions assure that particles that
escape from the end of lattice-domain are re-introduced at its beginning. In pumping zone,
momentum is added to the particles, forcing them to the flow domain. In this way, model
tries to mimic the real conditions related to a real hydraulic closed looping.

Free flow
zone

Free flow
zone

Pumping zone

Flow domain

Figure 3.1. LGA simulation sheme.

2.4.2 Simulation process, computer requirements

Figure 2.2 presents a LGA flow simulation through an artificially constructed , two-
dimensional, porous structure, with two main pore-scales. Although pore-space is
connected in both scales, fluid flows, preferentially, through the larger scale space,
circulating around the porous grains and creating stagnant and/or vortex flows inside the
lower pore-scale  space.
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(a)

(b)

Figure 2.2.  LGA flow simulation through an artificially constructed, two-
dimensional, porous structure, with two main pore-scales: a) lighter gray is related to
higher velocity modulus; b) zoom view showing circulation around the porous grains
and stagnant and/or vortex flows inside the lower pore-scale  space: velocity is
represented by arrows

Figure 2.3 presents a typical simulation result, showing permeability evolution for a
3003 representation of a sandstone, with a reported experimental permeability of 69 mD.
Simulation starts from zero-velocity initial conditions and is established after, around,
15000 time steps.

 LGA model has intrinsic fluctuations due to Boolean occupation of a discrete lattice
with a finite number of directions. In this way, mean flow rate was evaluated, at each time
step, by considering all the sites located inside the porous domain and time fluctuations
were reduced by performing time averages. Figure shows simulation results for time
averages, using, respectively, 100, 200, 400, 800 and 1600 time steps.
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Collision table takes 65Mb of computer resident memory, independently of 3D
representation size.  A 32 bits variable is used for describing the micro-state ni (X,T) of
each site. Process takes, around, 1Mb for storing the binary representation, 64 Mb for
storing the micro-states, needing a total of 130 Mb   for simulating a 2003 representation.
In this way, it was possible to run the most  part of processes on ordinary Pentium
processors. A 1 GHz processor takes about 2 µs to accomplish a single time-step, for each
site. As collision and propagation steps are, only, performed on the sites located in  porous
phase, processing-time is, about, 3s for a 2003 representation for a single time step and 12
h for 15000 time steps.
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Figure 2.3.  LGA permeability calculation for d18-connected 3003 three-
dimensional representation of  a rock sample, using different time steps averaging.
Experimental permeability value is 69 mD.

3.  LATTICE-BOLTZMANN MESOSCALE MODELS

Lattice-Boltzmann (LB) are mesoscopic models, firstly introduced as a numerical
method to solve Navier-Stokes equations (McNamara & Zanetti, 1988): Navier-Stokes
equations are simulated at a mesoscopic level and mesoscopic lattice evolution follows a
lattice equation (the Lattice-Boltzmann equation), written in the manner so as to retrieve
Navier-Stokes equations at macroscopic level. In its first generation, LB models were only
able to describe incompressible isothermal flows. A main contribution to LB theory was
given by He & Luo (1997), who introduced an a priori procedure to systematically derive
Lattice-Boltzmann models, with arbitrary precision, by using Gaussian-quadratures on
continuum Maxwell-Boltzmann distribution.

Although very suitable from a computational point of view, the use of Boolean
variables has very serious overcomes that may be summarized by considering: i) non-
physical terms in macroscopic equations due to exclusion principle, ii) excessive noise,
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produced by excessively drastic transitions and requiring spatial averages and iii) high
transport coefficients.

In fact, considering that populations in the lattice b directions follow a Bernoulli
distribution, it may be shown that, for scalar quantities, fluctuations σ in Boolean
simulation are given by (see, also Boghosian et al.,1997)

fmn
�

~σ                                                                 (3.1)

where f is the number of bits per site, m is the number of sites considered for spatial
averages and n is the number of independent realizations.

Considering molecular-chaos hypothesis, mesoscale models start from the ensemble
average of Boolean evolution equation, i.e., the lattice-Boltzmann equation (LBE) and
proceeds actualizing distribution Ni at each X, T in two simulation steps:
collision step

N'i(X,T) =Ni(X,T) + Ωi(No, N1, ..,Nbm) ,                                    (3.2)

propagation step

Ni(X+ci, T+1)=N'i(X,T)                                                (3.3)

for i=0,1,...bm.
It is easy to see that, although drastically reducing fluctuations, mesoscale models

have the same remaining overcomes of Boolean models when collision  term Ωi is taken as
the ensemble average of Boolean transitions (Eq. 2.5). Particularly, model would predict a
non-physical Fermi-Dirac distribution at equilibrium, due to exclusion principle
(McNamara and Zanetti, 1988).

Nevertheless, avoiding its Boolean nature,  a collision model can be written for  Ωi

with the condition that it leads to a physically consistent equilibrium distribution. In this
way, Higuera and Jimenez (1989) proposed a linear approximation to Ωi
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which reduces to BGK collision term (Bhatnagar et al., 1954) when

ikik

1 δ
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=Λ                                                              (3.5)

giving a single relaxation time model, Chen et al. (1991.c), Qian et al. (1992). Recently, He
and Luo (1997), demonstrated that BGK relaxation equation

Ni(X+ci, T+1) - N'i(X,T)=
τ
− i

eq
i NN

                                    (3.6)

can be deduced from its well-known counterpart BGK equation from continuous kinetic
theory, by using a discrete set of velocities.
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In Eq. (3.6), a  2nd order velocity polynomial form is given to equilibrium distribution,
which coefficients are obtained by considered lattice isotropy  and by requiring
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A Chapman-Enskog analysis for the model above described shows that correct
Navier-Sokes equations are retrieved  for non-compressible flows. In fact, non-physical
compressible effects appear, proportional to M2, in momentum equation for compressible
flows.

3.1 Thermodynamic consistent mesoscale models

To give thermodynamic consistency, lattice models must consider energy
relaxation. A pioneer work on a 2D thermal lattice BGK model was published by
Alexander et al. (1993), generalized by McNamara & Alder. (1993) to include different
relaxation times for the stress and energy. Chen Oashi and Akiyama. (1994) used a 4th-
order  velocity expansion for the equilibrium distribution, up-grading the lattice symmetry
to ensure isotropy for the sixth-rank velocity-moment tensor, using a single relaxation time
model,

Ni(X+cik, T+1) - Nik(X,T)=
τ
− ik

eq
ik NN

,                                            (3.12)

where k designates an energy level for velocity vector cik, giving the modulus of  cik.
Equilibrium distribution was written as
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Chen and co-workers model retrieves the correct thermo-hydrodynamic equations for
compressible flows, with the only, visible limitation in the Prandtl number due to the use of
a single relaxation time.
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3.2 Sample application: vortex shedding from 2D obstacles

Boundary conditions at solid surfaces were simulated by using the bounce-back
condition

),(),( TNTN bibi XX =+− � ,

for a  boundary site Xb in the fluid, when direction i  points to the solid surface. This
assures the adherence condition u=0  at the boundary.

When iN  particles are reflected back at boundary sites Xb, they exchange the

momentum iiN c� with the solid surface, since lattice-Boltzmann particles have unitary

mass. Considering that this exchange is performed in each unitary time step, this
momentum exchanged represents a force Fi, on the solid surface adjacent to site Xb. In this
way, the total force on the solid body can be calculated by.

)( b
X i

i

b

XFF ∑∑= .

In this way, the drag and the lift force can be calculated without the need of
cumbersome numerical derivatives of the flow velocity field at the solid boundary.

Figures 3.1-3.2 show sample results for a single circular cylinder. Flow is laminar and
vortex shedding is very stable for Re smaller than 47.5 (Figure 3.1). For larger Re, small
flow perturbations gives rise to vortex release from the cylinder, starting flow transition.
Vortex formation frequencies can be measured by calculating the Fourier transform of the
lift force.

Figure 3.1 Comparison of streamlines from LB simulation for laminar flow around a
circular cylinder with experimental visualization (Tritton, 1988) at Re=40.
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Figure 3.2. Comparison of  LB calculated drag coefficient with others authors for
a circular cylinder.

Figure 3.3.  Sample streamlines for the vortex shedding from two circular
cylinders in tandem at Re=200. The centers of the two cylinders are
separated by L=1.5d, where d is the diameter of the left cylinder. Right
cylinder has a diameter D=d/2.
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 Figure 3.4.  Sample streamlines for the vortex shedding from two circular
cylinders in tandem at Re=200. The centers of the two cylinders are
separated by L=2.5d, where d is the diameter of the left cylinder. Right
cylinder has a diameter D=d/2.
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Figure 3.5.  Drag coefficient for the vortex shedding from two circular
cylinders in tandem at Re=200. d is the diameter of the left cylinder. Right
cylinder has a diameter D=d/2 (Lima & Silva et al., 2002).
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A comparative work between lattice-Boltzmann and immersed boundary method was
undertaken by Lima & Silva et al. (2002) for the analysis of vortex shedding around two
circular cylinders in tandem, for Re=200. This is a very interesting problem, since when the
two cylinders are close enough, the vortex generated at the intermediate region are not
released to the outer flow and drag force is negative for the second cylinder. Results are
shown in Figures 3.3-3.5. Agreement between lattice Boltzmann and immersed boundary is
almost perfect and transition to positive drag is predicted at L ~ 2.6d by both methods  (L is
the distance between the centers of the two cylinders).

4. MULTI-BITS AND INTEGERS MODELS

Boltzmann models suffer from stability problems that are common to all numerical
methods based on floating-point arithmetics and restricting Courant-Lewis-Friedrich
number working range (Rothman & Zaleski, 1997). Boolean models have as its more
serious drawbacks: i) the prediction of macroscopic non-physical effects due to the
exclusion principle and ii) the excessively high noise, requiring spatial and time averages.
Multi-bits and integers models are presently being developped with the purpose of reducing
these inconvenients.

Models are based on the idea of filling each lattice direction i with an arbitrary number
of distinguishable (multi-bits) or undistinguishable (integers) bits (Bhogosian et al., 1997).
In this way,

)s,...s;...;s,...s;s,...s(s
mmr b11b11b001 ""

=

represent a microscopic state  s of a multi-bits model, where for each i,j,  sij is a  Boolean
variable, br is the allowable number of undistinguishable rest particles and particles

occupation proceeds along the bm directions of each of  identical P -planes, which are "
repeated. For  2D simulations each P - plane can be considered as a 2D hexagonal lattice
obtained by considering for each site X, the first 6 neighbors at 1 lattice-unit from X,  the

second 6 neighbors at �  lattice units from X and so on. In this way, particle speeds can
be 1, 31/2, 2, 71/2, .... (Grosfils, Boon, Lallemand, 1992)

Considering nij(X, T)  to be the Boolean variable related to i-direction particle
occupation at j-plane of site X, at time T, microscopic dynamics follows,

)n,...n;...;n,...n;n,...n()T,X(n)1T,cX(n
mmr b11b11b001ijijiij ""

ω=−++

where ijω  is the full collision term, written as,

∏ ∏∏∑ −−
ξ −−−α=ω

k m

s1
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s

pm
p

s1
k0

s
k0ijij

's,s
)T,X(ij

pmpmk0k0 )n1(n)n1(n)s's()'s,s(

where ),( TXξ is a random number attributed to site X, at time T
Collisions are performed preserving mass,  ρ , momentum, uρ  and kinetic energy, ε ,
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Furthermore, collision rules are required to satisfy semi-detailed balance. Main
limitation of multi-bits models is related to the excessively large computer resident memory
required to store the collision table. In this way, two planes of a FCHC model with 24
directions require 106 Mb of resident memory.

1

3 1/2

2

GBL(1994)

11
11

11
11

Bhogosian (1998)

Figure 4.1 GBL multi-speed model and Bhogosian integers models

5. BOOLEAN MODEL FOR MISCIBLE AND IMMISCIBLE FLUIDS

Mixtures and diffusion processes were simulated, Rothman and Zaleski (1997), by
distinguishing different kinds p of particles. Most common models use two-bit Boolean
variables (ri, bi) representing colored particles of identical mass, like red (p=r) and blue
(p=b) and diffusion coefficient can be related to collisions frequency between particles of
different colors.

Long-range attraction between particles of the same kind promotes particles
separation, being responsible for interfacial tension. Boolean models for simulating
immiscible fluids flow were, firstly, proposed by Rothman and Keller (1988). In this model,
long range attraction between particles of the same kind is modeled by modifying the
collision step, introducing an additional separation step between particles of different
kinds, based on the information of the populations in the first neighbors of site X, in time
step T.  Output site configuration is decided after a maximization step for the color flux, in
accordance with a color gradient  at site X.

Bhogosian (1997)GBL(1992)
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Rothman and Keller's model is computer expensive when processing time needs are
considered. Chen and co-workers  (Chen et al., 1991.a) proposed a two-bits local model,
where the neighbors survey of Rothman and Keller was avoided, by introducing colored
holes. Colored holes are null-mass particles representing the memory of the kind of a given
particle, and moves in the same direction that particle moved before collision. The state of a
given site is represented by a two-bit variable. In this way, in separation step, particles are
deviated to the direction from where holes were originated, simulating long range
attraction, by using, only, local rules. This is achieved by maximizing the color flux in a
given site X. Nevertheless, Chen's optimization step is, also, computer expensive with
respect to processing time.

A four-bit model is presented bellow based on Santos (2000), Santos & Philippi (a)
(2002) and Santos et al.(b) (2002). Intended to model the flow of immiscible fluids, the first
two bits are used for different kinds r and b of particles, whereas the remaining two-bits are
used for, respectively, r and b mediators. When a site X can be considered as an attractive
center for p particles, p= r, b, it will emit  mediators of kind p that will be propagated to
neighbor sites, in propagation step. Interference of p-mediators pull back p-particles to site
X, moving away from X.  In this way, mediators try to simulate the effect of long-range
forces on fluid separation, following very simple emission and interference rules,.

The state of a given site X at time T is given by a four-bit Boolean variable (ri(X, T),
bi(X, T), mr

i (X, T), mb
i(X, T)), i=1,...,b. where r, b, mr and mb belongs to { }1,0 and

designate, respectively, r particles, b particles, r mediators and b mediators. Model allows
simultaneous ri and bi bit occupation, but exclusion principle is maintained between
particles of the same kind. Particles are considered to have the same, unitary, mass and
mediators are null-mass particles propagating field information at lattice speed c.

Microdynamics has the following steps:
i) Collision. Collisions are responsible for mixing particles of different kinds, in the

transition region, being related to binary species diffusion coefficient Drb. In a discrete
lattice gas space, microdynamics equation relating post-collision Boolean variable pi’ to pi

can be written as

( ),)T,X(*b),T,X(*r

)b,...,b,r,...,r()T,X(p)T,X(p
p
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b1b1
p
ii

'
i

ω≡
ω=−

                                      (5.1)

where )p,...,p(*p b1
= designates a pre-collision configuration for p particles on site X, at

time T, sequence  1,...,b is related to Boolean occupation for b allowable particles in a
lattice with  b directions. A Boolean variable with 2b bits, is used to designate an arbitrary

particle state ),...,,,...,( b
bb

b
rr sssss ��=  of the lattice model in the Cartesian product Br X Bp

space. Collision operator,
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∀ i =1...,b,  maps a b�
�  dimensional space on the set {-1,0,1} and can be written as
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where )',( ssξα  is the transition matrix (Rothman and Zaleski, 1997), )T,(Xξ=ξ  is a

random variable attributed to site X, at time T. Transition matrix must assure  mass and

momentum conservation in collisions. In addition, )'s,s()'s,s(A ξα=  must satisfy the

semi-detailed balance condition:

1)s'A(s,)s'A(s,
ss'

== ∑∑ ,                                            (5.4)

as sufficient conditions for satisfying H-Theorem in describing irreversibility of diffusion
processes (Frisch et al., 1986).

ii) Interference with field mediators. After collision, particles of kind p, in the site X,
are subjected to long-range attraction from particles of the same kind. In present model, this
is simulated locally, by inverting the momentum of each p-particle when a) it finds a p-
mediator in the same direction and b) opposite direction is free from p-particles (since
exclusion principle is preserved when particles are of the same kind). In this way, in
comparison with Chen et al 's model (Chen et al., 1991a), although momentum is not,
locally,  preserved, this rule enable avoiding Chen et al. computer expensive optimization
step and is of no-consequence for the global behavior of the model, when a sufficiently
great number of realizations are considered.

iii) Emission of field mediators. Considering an elementary volume ϑ  located inside a
mixture of two real gases, ϑ  acts an attractive center for p molecules when np/n is above
some critical value (np/n)*, with a potential strength that depends on the kind of r-r, b-b
and, consequently, r-b, interactions. In present LGA model, site X will be a source of p
mediators when (np/n)>(np/n)*, with a given emission probability Pe that depends on
particle-p concentration np/n on site X, at time T.  Emission probability is, thus, related to
the potential strength in the transition region, giving the interfacial tension, rbσ . When

Pe=0, independently of np/n, fluids r and b will mix without long-range field restriction.
iv) Extinction of field mediators. In addition to field strength, interaction length is an

important parameter, contributing to transition layer thickness. In present model, interaction
length is related to an extinction probability Pa. Thus, for a field mediator mp (X,T) to be
annihilated two conditions are imposed: a) np(X,T)=0 at site X and b) P(X,T) ≤ Pa, where P
is a random variable attributed to site X, at time T, 1P0 ≤≤ . These conditions assure that,
e.g., a field mediator r will be never destroyed in the transition region r-b and that  r-
mediators will be found inside b-phase, trying to rescue r-particles moved to b-phase by
collisions.

v) Propagation. In propagation, particles and mediators are propagated to next
neighbors, in the same manner as in conventional LGA models (Rothman and Zaleski,
1997). In present model, propagation of p-mediators in the i-direction will pull back p-
particles to site X, from neighbors sites X+χci, with decreasing probabilities that depend on
emission and annihilation probabilities and on distance χ from site X (Santos, 2000).

vi) Boundary conditions. Wetting/non-wetting properties of a pair of fluids with
respect to solid surfaces are a macroscopic result of differential, long-range attraction
between solid and fluid molecules. At equilibrium, this preferential attraction can be
summarized by the formation of a well defined contact angle, θ , between fluid interface
and the solid wall, which depends on the pair of fluids and on the solid surface.  In present
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model, preferential attraction of solid wall S, with respect to a given fluid p, is simulated by
reflecting back p-mediators at boundary sites Xs, with a given probability Ps, related to θ .
Non-wetting fluid mediators are not reflected at boundary sites, being annihilated at these
sites. This condition may be written as,



 ≤

=+ −

otherwise            0

P)T,P(X when )T,X(m
)1T,X(m sss

"p
i

s
p
i                                   (5.5)

i∀ pointing outward the solid surface, when p is the wetting fluid with respect to solid
surface and where P is a random variable attributed to site Xs, at time T, 1P0 ≤≤ .
vii) External forces: forcing step. Forcing step is performed before collision step, above
described. Labeling by k the lattice direction parallel to external field direction, external
forces gp are simulated by reversing the momentum of particles r and b, located at direction
-k opposed to gp, when direction, k, is free from particles of the same kind. Probability Pg,p

to this reversion, represents the force strength gp on component p. Microdynamic equation
describing forcing step can be written as:
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= −

otherwise              p
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pg,kk'
k       p=r,b                  (5.6)

where P(X,T) is a random variable attributed to site X, at time T, 1P0 ≤≤ .
At equilibrium, using ergodic hypothesis when considering the whole lattice

domain, the mean effect of forcing step on p-particles can be calculated by,
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which is the force, related to the  momentum the <np> particles per site are expected to gain
in direction k during a lattice time-step.

5.1 Sample application: Droplet formation under gravity action: Santos (2000), Santos
& Philippi (a) (2002)

Although very interesting from a physical point of view, droplet formation from a
dropper is a very difficult problem, when we consider classical discrete methods of fluid
mechanics. Droplet formation is pictured in Figure 1.2.

From a macroscopic point of view droplet’s shape time evolution is linked to the
competition it is subjected between gravity action, viscosity of the droplet fluid and
interfacial tension. In this way, interfacial forces hold the droplet until break-off, as droplet
weight increases. Break-off starts with the development of a throat, which becomes thinner
in time and from where droplet fluid is pulled downward against the droplet and
redistributed horizontally by viscous forces, giving an almost ellipsoidal shape to the falling
droplet, with a major axis oriented along horizontal direction.

From a microscopic point of view, during the first moments of droplet fall, r-particles
at droplet surface are subjected to long-range forces from r-phase inside the dropper,
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maintaining the integrity of r-phase in despite of gravity action. Droplet break-off starts
when combined action of gravity and downward long range attraction from the created
droplet increases with respect to upward long range attraction from r-phase inside the
dropper, giving raise to the formation of droplet throat.  During and after break-off, r-
particles in the throat are pulled against the droplet, where these particles are redistributed
inside the droplet by r-r collisions (related to the viscosity of droplet fluid).

Figure 5.1 shows a sequence of simulation results using present field-mediators model.
Comparison of Figures 5.1 and 1.2 shows a very good qualitative agreement between
simulation and experimental results.

Figure 5.1  Simulation of droplet formation under gravity action.

5.2  Sample application: spreading of a liquid drop on a flat surface (Wolf et al., 2002
and Wolf, 2002).

Fig. 5.2 shows Boolean simulation results for the spreading problem arising when a
liquid drop is put in contact with a flat solid surface, until mechanical equilibrium is
reached and drop surface establishes a definite contact angle with the solid surface. Long-
range attraction between solid surface and liquid phase is simulated by using surface
mediators that are created at the solid boundary sites and pull liquid phase particles to the
solid surface. Surface mediators are created with an emission probability s

eP , related to the

interaction potential strength and annihilated with an annihilation probability a
sP , to be

associated with the interaction length. These microscopic parameters can be controlled to
give the desired equilibrium contact angle, corresponding to a given pair of fluids in contact
with a solid surface.

Figure 5.2 Spreading of a liquid drop on a flat surface

Simulation predicts a power-law behavior, R ∝ tn, for the time evolution of the radius of
the wetted solid surface with time, where n=0.33. This agrees with several experimental
visualization results, although exponent 'n' is much dependent on the initial configuration
of the liquid drop.
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Figure 5.2 Time evolution of wetted surface radius

Figure 5.3 Spreading of a liquid drop on a vertical surface under gravity action.

Figure 5.3 shows the simulation results for the spreading of a liquid drop on a flat
vertical surface under gravity action.
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6. A BOLTZMANN MODEL FOR MISCIBLE FLUIDS (Facin, 2002, Facin et al.,
2002)

At a given site, in a mixture of two fluids r and b, transition term can be written as a
sum of two relaxation terms. Collisions between particles of the  kind r, try to impose
equilibrium distribution ),(RR rr

0
i

o
rr,i uρ= , with a relaxation time rτ , specific to kind r

particles and related to r-fluid  viscosity. Collisions between particles of  kind b, try to
impose a different equilibrium distribution, with a relaxation time bτ . Collisions between

particles r and b try to impose a common distribution to both kinds of particles
),(RR br

o
i

o
rb,i uρ= with a relaxation time rbτ , related to binary species diffusion coefficient.

In this way,
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−ρ
ω=Ω                              (6.1)

for i=0,1,...bm, where ρρ=ω /rr  and ρρ=ω /bb .

Equilibrium distribution for pure fluid r is, usually, required to satisfy:

 i)  mass conservation of r and b particles

∑
=

ρ=+
mb

1i
rroi bRR                                                                 (6.2)

ii) momentum conservation

∑
=
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rriiR uc                                                                        (6.3)

iii) preservation of momentum flux at zero-th order
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Collisions of r and b particles are required to satisfy:

i) mass conservation of r and b particles

∑
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ii) momentum conservation
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iii) preservation of momentum flux at zero-th order
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m                                                   (6.7)

7. A BOLTZMANN MODEL BASED ON MEDIATORS FOR IMMISCIBLE
FLUIDS (IMLB): Santos & Philippi (b) (2002), Facin (2002), Facin et al. (2002)

Boltzmann models have been developed for immiscible fluids by Gustensen et al.
(1991), Shan and Chen (1994) and by Martys and Chen (1996). In the following, the main
idea of Santos & Philippi (a) (2000), considering mediators for modeling long-range forces
is used for Boltzmann mesoscopic models.

When fluids are immiscible, long-range attraction between particles of the same kind,
will try to separate the two fluids. In this way, in addition to r-r and r-b collisions in the
transition layer, there will be a separation effect due to long-range fields.

In its simplest form, the probability of finding red mediators on a given site X, at time

T, r
iM (X,T) can be written, in emission step,  as proportional to ),( Tr Xρ . This information

is propagated to next neighbors sites, where interference is to be produced. The presence of
a long-range field from r-particles in a given site X is related to a non-null value of

mediators distributions ),( TMr
i X and ),( TMb

i X  and their action will try to move red

particles to the direction from where red mediators came and blue particles to the direction
from where blue mediators came. In this way, we can define a separation velocity,
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−=                                                  (7.1)

and collision operator can be written as
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where

         mb
m
b Aûuu −=                                              (7.3)

In the above equation, mû is the normalized separation velocity mu . Coefficient A gives the

long-range potential strenght and will be related to interfacial tension rb
σ  between fluids r

and b. When A=0, the model reduces to the miscible collision term, given by Eq. (6.1). It



108

has been shown that above collision model satisfies all the restrictions imposed by the
conservation laws. Furthermore, up-scaling to macroscopic scale shows that presently
proposed model gives a consistent hydrodynamic behavior, for incompressible fluids
(Facin, 2002).

7.1 Sample application: bubble ascension dynamics, under gravity action (Philippi et
al., 2001)

Figure-7.1 shows results of a two-dimensional simulation for bubble ascension against
gravity. Simulation domain is 400X800. and bubble is considered as a circle at t=0, with an
initial diameter of 100 lattice-units. Simulation uses a 2D FCHC lattice. Very interesting
dynamical effects produce bubble deformation during ascension.

(a): t=0 (b): 2000 time steps (c): 3000 time steps (e): 4000 time steps

Figure 7.1. Bubble ascension against gravity. Simulation domain is 400 x 800. Initial bubble
diameter corresponds to 100 lattice units.

7.2 Sample application: pore invasion by a wetting fluid: Santos & Philippi (b),
(2002)

Figure 7.2 illustrates the simulation results obtained with IMLB, when a wetting
fluid invades a 2D pore with a rather complicated geometry. Pressure is identical at the
two outside chambers and invasion proceeds by capillary forces, only. When wetting
fluid exits the first throat, the interface curvature radius is increased and interface
speed is reduced. Interface moves very slowly in this phase (b), until attractive forces
between the wetting fluid and the opposite solid surface produce the resident non-
wetting fluid break-off (c). From this point, the wetting fluid moves very fast along the
two channels and non-wetting fluid is displaced in a piston-like process (d).
Displacement rate is, again, reduced when wetting fluid enters the right, internal
chamber (e). In this phase attractive forces between the interface and the pore surface,
at the bottom of the cavity, can produce non-wetting fluid entrapment.
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         (a)                     (b)                       (c)                      (d)                   (e)

Figure 7.2 Break-off and piston-like displacement in wetting fluid invasion

8.  CONCLUSIONS

Lattice gas automata concepts appear to be very suitable for explaining complex
macroscopic effects, based on simple models of fluid behavior at molecular level.

In this lecture, Boolean and Boltzmann models were presented for simulating single-
phase flows and the flow of immiscible fluids. Single phase flow through porous media was
presented in details, using a Boolean model for predicting intrinsic permeability of porous
rocks reconstructed from two-dimensional petrography thin-plates. Vortex shedding was
simulated using a lattice Boltzman model, appropriated to incompressible, but arbitrary
Reynolds number, flows. Main ideas related to some improvements of Boolean models, by
filling the lattice directions with an arbitrary number of bits are, also, presented.  Field
mediators were introduced, for representing the action of long-range fields when modeling
immiscible fluids in the study of complex physical phenomena such as coalescence and
fragmentation.

Considering their inherent simplicity, presented results, apparently, confirm the
adequacy of lattice gas models in the study of fluid flow and physical phenomena related to
fluid flow that require lower-level description scales.
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