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Abstract. Turbulent flows inside curvilinear obstruction tubes are encountered in many
engineering situations. The prediction of flows in the presence of separation and
reattachment is a difficult task. Several low-Reynolds number turbulence models have been
developed aiming a better prediction of the recirculation areas, as well as pressure recovery
after the obstruction and shear stress distribution along the duct walls. At the present work,
the curvilinear obstruction is described by a cosine curve. For this geometry, the κ-ε low
Reynolds number turbulence model LSH presents a reasonable prediction for the mean flow
field and pressure drop, however it fails to predict the turbulent quantities. The objective of
the present paper is to analyze the influence of different low-Reynolds correction terms in the
LSH model. Therefore, a few modifications were introduced in the original model. The
velocity, turbulent kinetic energy and dissipation rate fields obtained by the different model
modifications are compared with numeric and experimental data found in the literature. The
numeric determination of the fluid flows was accomplished by a finite volume method. Among
all model modifications that have been tested, none was able to reproduce exactly the
experimental data.
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1. INTRODUCTION

Numerical simulation of flow field has become an excellent tool to help develop projects
and process that are more efficient at a lower cost. For engineering applications, in general the
flow field is turbulent. Since turbulent flow is three dimensional and transient, the computing
effort to obtain directly the velocity and pressure field, especially in complex geometries, is
very high. An attractive alternative from the practical point of view is to employ turbulence
models to predict the time average variables of interest. Among the two equation differential
models available, the high Reynolds numbers κ−ε model is still the model more widely used
to solve practical engineering problems. The traditional κ-ε model has been significantly
enhanced to be applied to the whole domain, i.e, in the near wall region as well as in the
turbulent core. These models are called low Reynolds number κ-ε models (LRN), since they
can predict the flow behavior near the walls, where the local Reynolds number is low. They
are obtained by the introduction of some correction terms for the wall region in the traditional
κ-ε model. Along the lasts decades, several works have been published, with different



variants of the model. Just a few of them are referred here: Jones and Launder, 1972, Patel
and Rodi, (1985), Koobus (1994), Geronimos and So (1997) and Chen et al. (1998).

Flow field in curvilinear obstructions is often found in engineering applications. An
example that can be mentioned is the presence of weld joints in small diameter ducts which
causes localized corrosion after the restriction. The prediction of the pressure recovery and the
shear distribution along the obstruction can help to design equipment to avoid the corrosion
(Rastogi, 1984). Zevallos and Nieckele (1999) investigated the performance of three different
low Reynolds number models to predict the flow field in a duct with a curvilinear obstruction
defined by a cosine curve. The model developed by Hanjalic and Launder (1980) presented
the best prediction of the mean flow field and pressure distribution, however no model was
able to reproduce the turbulent quantities.

The main objective of the present work is to analyze the influence, in the numerical
solution of the flow field, of the different correction terms of the Hanjalic and Launder (1980)
model.  In addition, verify whether modifications in the selected model are capable of better
capturing the recirculation areas and pressure recovery after the obstruction, which are
fundamental in the evaluation of the shear distribution.

2. ANALYSIS

The geometry selected to be analyzed at the present work consists of a duct with circular
cross-section, with a curvilinear obstruction as illustrated in Fig. 1. The obstruction is defined
by a stenosis type of curve, described by the following expression

( )[ ]oooc x/xcosR/R/R πδ +−= 121 (1)

where Rc is the duct radius, Ro

the unobstructed duct radius,
δ is restriction height, x is the
axial coordinate and xo is the
restriction half length. The
dimensionless parameters that
characterized the obstruction
were set as xo/Ro  = 2 and δ/Ro

= 0.5. The length of the
straight duct upstream and
downstream the obstruction
were set at xup/Ro = 2, and xdn/Ro = 14. This configuration was experimentally investigated by
Deshpande e Giddens, 1980. Numerical investigation based on the standard κ−ε model has also
been performed for this configuration by Rastogi (1984), Melaaen (1992) e Zijlema et al.
(1995).

To obtain the flow field in a horizontal axi-symmetric duct, the following hypotheses
were made: Newtonian fluid, constant properties and steady state regime. The average
continuity and momentum equations, based on the Boussinesq approximation, can be written
as:
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Figure 1- Duct with curvilinear obstruction.



where uj are the velocity components, xj the coordinate directions, µ and µt are the absolute
and turbulent viscosity, ρ is the density and P is a modified pressure [ κρ)3/2(+= pP ],
where κ is the turbulent kinetic energy.

Zevallos and Nieckele (1999) investigated the performance of different low Reynolds
number models to predict the flow field in the present configuration. Based on their analysis,
the model developed by Launder and Sharma and modified by Hanjalic, (Hanjalic and
Launder, 1980) was selected to be further examined, due to its ability to represent the flow
near the wall. This model will be referred here as the LSH model. For the LSH model, the
turbulent viscosity µ t is

εκρµ µµ
~/2

t cf= (4)

where fµ is a damping function, defined as

[ ])./(.exp 2
tRe020143f +−=µ (5)

which depends on the local Reynolds number Ret, given by

)~/( εµκρ 2
tRe =                       (6)

cµ = 0.09 is an empirical constant and ε~  is a pseudo dissipation rate of the turbulent kinetic
energy κ, defined as
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where ε is the dissipation rate of the turbulent kinetic energy κ. This variable is introduced to
simplify the definition of the boundary condition for the dissipation equation, which becomes
zero.

The turbulent kinetic energy κ conservation equation for the LSH model can be
represented by the following equation,
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where σκ = 1.0 is an empirical constant, and κP is the production of turbulent kinetic energy,
given by
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κL  is the term extra of the turbulent kinetic energy equation, due to the adoption of the
pseudo dissipation rate

wL ερκ = (10)

The pseudo dissipation rate of the turbulent kinetic energy ε~  conservation equation is
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where σε = 1.30 and C2= 1.92 are empirical constants. Pε  = 1C ε/κ Pκ is the production of

dissipation of turbulent kinetic energy. It represents the generation of vorticity due to vortices
stretching induced by turbulence. Hanjalic (1980) suggests that this term must be modified to
take in account in transfer of kinetic energy not only due to the rotational part of the stress,
but the irrotational part as well. The generation of dissipation should be governed by the
normal stress. Therefore, Pε was divided in two parts in order to give different weights to the
normal and tangential stress contribution to Pε , which is then given by

( )[ ] ( )κεδδ κκε /~
ij3ij1 PC1PCP +−= (12)

where 1C =1.44 and 3C =4.44 are empirical constants. In the above equation, Pκ δij implies the

normal stress contribution and Pκ (1-δij) the tangential stress contribution.
The correction terms introduced in the traditional κ−ε model to represent the flow near

the walls are the damping functions fµ and f2 and the additional source terms Lε in ε~
conservation equation. The damping function f2 is

( )2
2 301 tReexp.f −−= (13)

The Lε term is introduced in the original LSH model, to better represent a peak of kinetic
energy observed in experimental data for the jet flow, and it is given as
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The modifications implemented in the LSH model have been made with the objective of
investigating of the influence of extra term Lε and the production term coefficients 1C  and 3C

in the dissipation equation. These terms have been empirically introduced in the dissipation
equation. Logically, in order to evaluate the results of the modifications, only one term is
modified at a time while every other term is kept equal to the one in the original model.

The first modification introduced was to equate the generation term constants C1 and C3 in
the dissipation rate equation. This has been done in order to provide the same weighting factor
to the normal and shear stresses and to verify whether different weighting factors have a great
influence in the turbulent kinetic energy dissipation rate. This case is named as C3 = C1.

The second modification introduced was the omission of the extra term in the dissipation
rate equation as this term had been introduced in the LSH model, without any good explanation,
for a jet flow. The results due to this modification are referred here as Lε = 0, C3 ≈ 3C1.

The third modification performed consisted of not only omitting the extra term in the
dissipation rate equation, but also equating the constants of the generation term of the
dissipation term. The objective is to verify whether the combined effects could lead to
improvements in the obtained results. This case is referred as Lε  = 0, C3= C1.

The last modification was to investigate, in the absence of Lε, another combination of the
weights given to the normal and tangential stress contribution to the production of ε. The strength
of the normal stress contribution was reduced and defined as only twice the strength of the
tangential contribution. Thus, this case is refereed as Lε =0, C3 = 2 C1.



2.1 Boundary conditions

At the inlet, a fully developed velocity profile, uin, was specified in accordance with the
experimental data of Deshpande and Giddens 1980, as

( ) 4.6/1/125.1 omin Rruu −= (15)

where um is the mean velocity at the cross section. The boundary conditions, for the turbulent
quantities κ and ε , were not specified in the experimental work. The turbulent kinetic energy
κ was specified as, κin=1.5 (Iit um)2/2 where Iit is the turbulence intensity, defined as 3% in
accordance with the numerical simulation of this case by Melaaen (1992) and Zijlema et al,
(1995). For the dissipation rate, based on the recommendation of Shinha and Candler, (1998),
the following expression was adopted, )/(//

in
23

in
43 4cin "κε µ= , where in�  is the mixing length,

and it was defined as ].);([ ooin R10rRK −= min�  where K=0.4 is the von Kármán constant.

At the symmetry line, the normal velocity component was set equal to zero as well as the
normal gradient of all others variables. At the exit plane, the traditional boundary condition of
neglecting the diffusion flux of all variables was employed. At the solid surfaces, the non-slip
condition was enforced.

3. NUMERICAL METHOD

A non-orthogonal curvilinear system of coordinates, which adapts to the boundaries of
the domain, was employed. This is an important technique, which allows an easy and exact
representation of the boundary conditions, making it possible to solve turbulent flow field in
complex geometries. The conservation equations are discretized with the aid of the finite
volume method described in Patankar (1980), using the power-law scheme. Staggered
velocity components were used to avoid unrealistic pressure fields, and the contra-variant
velocity component was selected as the dependent variable in the momentum conservation
equations (Pires and Nieckele, 1994). The pressure-velocity coupling was solved by an
algorithm based on SIMPLEC  (van Doormaal and Raithby, 1984). The resulting algebraic
system was solved via the TDMA line-by-line algorithm (Patankar, 1980) with the block
correction algorithm (Settari and Aziz, 1973) to increase the convergence rate.

To define the mesh size a grid test was performed, where different mesh sizes and
distribution were investigated. Finally, a non-uniform 115 x 60 points mesh was specified to
analyze the numerical prediction of the flow field. The grid points were concentrated near the
solid wall and the obstruction region. The commercial software FLUENT (FLUENT, Inc.V
4.4, 1996) generated the mesh, which is illustrated in Figure 2. The dimensionless wall
distance is often used to guide the grid distribution. It is defined as µρ /*nuy =+  where n is

the distance to the wall of the first node point and ρτ /*
wu = is the friction velocity where

τw is the wall shear stress. Since at the separation point, y+ =0, this variable is not employed in
the LSH model. For the mesh distribution employed in this work, approximately 3 points
were specified for the region where y+< 15.

Figure 2 – Non uniform mesh with 115 x 60 grid points.



4. RESULTS

The present problem is governed by the several geometric parameters presented and by
the Reynolds number defined as µρ /RuRe om 2= . For the present work, the Reynolds

number was set equal to 15 000.
To evaluate the effect of the modifications in the selected model, the velocity, pressure and

turbulence quantity fields were compared with experimental data of Desphande and Giddens
(1980), and the numerical results Melaaen (1992), based on the traditional κ−ε   model.

Melaaen (1992) solution was obtained with a non-orthogonal coordinate system, with
colocated cartesian velocity as the dependent variable, with a mesh size of 52 x 22 nodal
points. Melaaen (1992) investigated two interpolation schemes. The first one, based on the
power-law scheme, is not presented here. The second case, selected to be compared here,
employed a second order upwind interpolation scheme for the velocities and the power-law
scheme for the turbulent quantities. The same geometry was also investigated with the
traditional κ−ε  model by Rastogi (1984) and Zijlema et al, (1995).

4.1 Pressure and velocity distribution

To analyze the pressure prediction along the wall, a pressure coefficient was defined
based on the inlet pressure pin and mean velocity um as

( ) 2
minp u/ppC ρ−= (16)

The pressure distribution along the pipe wall is presented at Fig. 3. The dimensionless
centerline velocity Uc= uc/um along the axial direction is presented at Fig. 4. It can be seen
that all modifications in the selected model presented a similar behavior in the upstream and
convergent section of the duct, both for pressure along the wall and centerline axial velocity..
The results of all models super-estimate the minimum pressure, which occurs at the center of
the obstruction (x/Ro = 4) and under estimate the maximum velocity. At the divergent section
and at the downstream portion of the duct through the exit (4 < x/Ro  < 20), only the original
LHS model is able to satisfactory reproduce the smooth pressure recovery, presenting good
agreement with experimental data. Although the LSH underestimates the maximum velocity,
it is capable of capturing the flow desacceleration at the divergent region, up to the section
x/Ro = 6, since an excellent agreement with the experimental data is observed. After the end
of the obstruction, x/Ro = 8, it can be seen from the experimental data, a fast velocity recovery
to its initial value at x/Ro = 14. The LSH model does not predict this desacceleration. It is only
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Figure 3 – Pressure coefficient Figure 4 – Centerline velocity distribution



at x/Ro = 10.5 that a strong desacceleration is observed.
Analyzing the pressure distribution and velocity distribution, one can conclude that in

fact the normal stress does have a strong influence in the production of ε . When both stresses
have the same influence, the pressure recovery is super-estimated, resulting in a strong
velocity desacceleration beginning at the center of the obstruction. The effect of the extra
source term in the ε equation is not as significant as the normal stress contribution. When the
two constants are the same (C1 = C3), the presence of Lε in the equation ε is not even felt.
When Lε =0, the pressure and velocity distribution obtained are similar to the original LSH,
however the pressure after the obstruction is still higher than the experimental data and the
velocity recovery is anticipated. Note that the results obtained when Lε =0 is very similar to
the results obtained, with higher order interpolation scheme of Melaaen (1992), with the
traditional κ−ε model. Note that for Lε =0, as the weight of the normal stress increases, the
pressure and velocity distributions get closer to the experimental data.

4.2 Friction factor and reattachment point

The friction factor, or dimensionless wall shear stress, τs, can be defined as

)u.(/C msf
250 ρτ= (11)

The friction factor distribution along the wall is shown in Fig. 5 for the different cases
tested. A zoom in the recirculation region is shown in Figure 5b. These values were not
available for the traditional κ−ε  model, and they will not be presented here. It can be seen,
that the shear stress increases at the convergent region of the duct, reaching a maximum value
at the center of the obstruction, with a very sharp drop right after it. The separation point is
clearly identified as the position where the shear stress is zero. After this point, the shear
stress becomes negative indicating the recirculation region. All models, with the exception of
the Lε=0, C3=C1 case, present an increase of the shear stress after the separation point.
However, near the end of the obstruction region, close to the center of the recirculation, where
the reverse flow is stronger, a decrease in the shear stress is observed. After which, the shear
increases again. When the extra term Lε is zero, the size of the recirculation regions is
reduced. As the contribution of the normal in relation to the tangential one is reduced, the size
of the recirculation region is further reduced. Once again the influence of the Lε is smaller.

Table 1 presents a comparison of the separation and reattachment points, xs and xr,,
predicted by the different models and the results of Rastogi (1984) and Melaane (1992)
obtained with the traditional κ−ε models. The experimental results of Desphane and Giddens
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(1980) are also shown at the table.
By examining Table 1, it can be seen that the higher order scheme with the traditional

κ−ε model (Melaaen, 1992) and the Lε = 0 case presented the best agreement with
experimental data, for both separation and reattachment points. The LSH model underpredicts
the separation point and overpredicts the reattachment point. Note that the normal stress is not
a factor to determine the separation point, but it significantly affects the flow after separation.
The worse result was predicted by Rastogi (1984), however, they are not very different than
the ones predicted by the C1=C3 with Lε = 0 and C1=C3 with Lε≠0 models.

4.3 Turbulence quantities

The only turbulence quantity available in the literature to allow a comparison with the
present results is the turbulent kinetic energy. Figure 6 present its dimensionless distribution,
κ∗ =κ/um

2, along the centerline. It can be seen that the agreement of the different numerical and
turbulent models with experimental data is not satisfactory. The experimental data show an
approximately constant κ up to the section of maximum obstruction. Along the region where
pressure is recovered, there is a substantial increase of κ, followed by a strong decrease. The
kinetic energy is generated at the obstruction and convected to the rest of the domain.
Therefore, the increase on its value is only observed at the centerline further downstream. The
section where κ starts to fall corresponds to the section where pressure has reached its
downstream level, as can be seen in Fig. 3.

All models presented a sharp increase of κ along the centerline followed by its reduction,
however, the section where the maximum occurs, as well as the maximum value are quite
different for each case. Note that the maximum κ
always corresponds to the point where pressure has
reach a constant value. This behavior can also be
observed by the experimental data. This means that
the numerical models are capable of capturing the
relationship of the turbulent quantities with the flow
parameters. However, when the turbulence model
underestimated κ and ε, the recirculation region is
smaller, the pressure recovery is anticipated. C3=C1

cases presented the largest discrepancies with the
experimental data, and present two peaks of κ. 
Melaaen (1992) result also shows two peaks of κ.
The first one over estimates κ , while the second
one is quite close to the experimental data. The LSH
model is not able to reproduce the increase in κ at
the obstruction region. It presents a sharp increase of

Table 1 – Separation and reattachment points
Model xs/Ro Erro % xr/Ro Erro %

Desphande e Giddens, 1980 (experimental) ≈4.4-4.5 8.0
Rastogi, 1984 5.2 16 6.4 20
Melaaen, 1992 4.6 3 8.1 1
LSH ; (Lε ≠0, C3 ≈ 3C1) 4.2 6 8.9 11
Lε ≠0; C1 = C3 4.6 3 6.9 14
Lε =0, C3 ≈ 3C1 4.6 3 7.9 1
Lε =0; C3 = 2 C1 4.6 3 7.5 6
Lε =0; C3 = C1 4.9 10 6.6 18
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κ, right after the reattachment point. The extra source term Lε did not affect the κ distribution
along the centerline. Note that, an increase the normal stress contribution to the production of ε
reduces the first peak of κ, and anticipates the second peak. The specified value of the LHS
model (C3=4.44) seams to be too large, while the C3=1.44 (C3=C1) is too small. In fact, the
C3=2C1 case, which corresponds to C3=2.88, also seams to be too large for corrected κ
distribution. However, if the C3 value is increased worse results will be obtained for the
pressure, velocity, and friction factor distribution.

To try to understand the results obtained, isocurves of turbulent kinetic energy and
dissipation rate are presented at Fig. 7 and Fig. 8, respectively, for the cases tested. In those
figures, the low κ  and ε values are represented by the darker gray and as the gray gets lighter,
their values increase. Low κ values can be seen near the entrance for all cases. The turbulent
kinetic energy begins increases at the obstruction, as one can see the gray getting lighter. Then it
reaches a maximum value at the recirculation region, when a new dark gray appears. The
kinetic energy is generated near the wall and then it is convected throughout the domain. The
recirculation region predicted by the LSH model is much larger than the other models, and its
center of rotation is displaced downstream, as a consequence the maximum turbulent kinetic
energy generation also occurs displaced to downstream. The high value generated are then
convected, and the increase in κ at the centerline is only seen at section x/Ro = 12. Examining
Fig. 7 and 8, it can be seen that when the normal stress has the same weight as the tangential
one in the Pε (C3=C1), larger κ is obtained in the obstruction region. In fact, larger weight to the
normal stress is recommended when there is curvature present in the domain, as is the case.
Unfortunately, as the normal stress weight increases, the recirculation region is displaced in the
axial direction, and the peak of κ occurs outside the recirculation region, which is not reasonable.

5. CONCLUSION

At the present paper, the model developed by Launder and Sharma, and modified by
Hanjalic, model LSH, is investigated to predict the flow field in a duct with smooth
obstruction. Four variations of the original model were investigated to help understand the
influence of each term in the flow field. It was verified that although the velocity and pressure
distributions were reasonable predicted by the different models, all of them fail to predict

        
(a) LSH model. (b) LSH model.

         
(b) Lε ≠ 0; C3 =C1 (b)  Lε ≠ 0; C3 =C1

        
(c) Lε = 0; C3 ≈ 3 C1 (c) Lε = 0; C3 ≈ 3 C1

        
(d) Lε = 0; C3 = 2 C1 (d) Lε = 0; C3 = 2 C1

        
(e) Lε = 0; C3 =C1 (e) Lε = 0; C3 =C1

Figure 7 – Turbulent kinetic energy distribution.               Figure 8 – Dissipation distribution.



correctly the turbulent quantities. The original LSH model presented the best agreement with
experimental data. However, the higher order interpolation scheme with the traditional κ−ε
model, also predicted good results. The SSA and NT models are not adequate to predict
separation along smooth surfaces, because the low Reynolds models are more expensive and
harder to converge and these models presented results equivalent to cheaper and easier to
implement traditional κ−ε  models. It seems that a combination of a higher order scheme and
the LSH model should be investigated.
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