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Abstract. The study of flow in porous media has gained an enormous attention lately due to
its potential industrial application. Analysis and optimization of Enhanced Oil Recovery
systems, cleaning of contaminated soil and improvements of modern fluidized bed combustion
systems, are just a few examples of such engineering applications. This paper presents an
overview of the major steps taken in developing a general two-equation turbulence model for
application in such systems. Transport equations are written for both clear fluid and porous
medium and the numerical scheme developed for treating both domains with a single set of
equations is discussed.
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1. INTRODUCTION

The mathematical modeling of flow in
hybrid porous media-clear flow domains
has a number of applications in petroleum
and gas engineering. Flow in vicinity of
pumping wells can become turbulent, due
to large voids, affecting overall pressure
losses and well performance. In addition,
the study of flow in porous media has
gained an enormous attention lately due to
its potential industrial application.
Analysis and optimization of Enhanced
Oil Recovery systems, cleaning of
contaminated soil and improvements of
modern fluidized bed combustion systems,
are just a few examples of such
engineering applications.

In many instances, the flow through
the porous bed becomes turbulent and, as
such, requires appropriate mathematical
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Figure 1 – a) Representative Elementary
Volume (R.E.V.), b) Model of R.E.V, periodic
cell and non-orthogonal grid.



tools for its reliable analysis. When the pore Reynolds number, pRe , is less than about

150~200, classical mathematical treatment invokes the notion of a Representative Elementary
Volume (R.E.V., Figure 1a) for which balance equations governing momentum, energy and
mass transfer are written (Ward, 1964, Whitaker, 1969, Bear, 1972, Vafai & Tien, 1981).
However, for fully turbulent flow regime (Rep > 300), turbulence models presented in the
literature follow two contradictory approaches. In the first one (Lee & Howell, 1987, Wang &
Takle, 1995, Antohe & Lage, 1997), governing equations for the mean and turbulent fields are
obtained by time-averaging the macroscopic equations. In the second method (Masuoka &
Takatsu, 1996, Kuwahara et al, 1998, Kuwahara & Nakayama, 1998, Takatsu & Masuoka,
1998, Nakayama & Kuwahara, 1999), a volume-average operator is applied to the local time-
averaged equation. In the literature, these two different approaches lead to different governing
equations.

Motivated by the potential application involved and by the interesting controversy in the
recent published literature, at the Instituto Tecnológico de Aeronáutica - ITA, in the
Computational Transport Phenomena Laboratory - LCFT/ITA, a research effort has
been carried out in the past four years in order to better understand, through adequate
modeling, the flow in the turbulent regime through a porous medium.

Among the steps taken, a review of different numerical techniques applied to the
simulation of flow in porous media (de Lemos, 1996) and a discussion on mathematical
models applied to Petroleum Engineering have been presented (Pedras & de Lemos, 1996).
Later, classical flow models in porous substrates were compiled (Pedras & de Lemos, 1998a)
and a preliminary proposal for a turbulence model was established (Pedras & de Lemos,
1998b). Then, a study on the different views in the literature followed, leading to the
proposition of the double-decomposition idea (Pedras & de Lemos, 1999a) and to a
subsequent development on the earlier preliminary model (Pedras & de Lemos, 1999b). The
double-decomposition idea led to a better characterization of the flow turbulent kinetic energy
(Pedras & de Lemos, 2000a) and was a step before detailed numerical solution of the flow
equations. These computations - in the domain of Figure 1b - were carried out in order to
establish a working version of the model (de Lemos & Pedras, 2000a, Pedras & de Lemos,
2000b). The cell in Figure 1b represents the R.E.V. and is characterized by D, the rod
diameter, H, the height of periodic cell and, S= 2H, the length of periodic cell. Recent results
for flow in hybrid domains have been documented (de Lemos & Pedras, 2000b).

The need of computing the fine flow properties in order to obtain the volume-integrated
quantities has motivated the development of adequate numerical tools. As mentioned, those
calculations were needed for adjusting the model and considered the high Re k-ε  closure
(Rocamora & de Lemos, 1998) as well as the Low Reynolds version of it (Pedras & de
Lemos, 2000c, Pedras & de Lemos, 2000d). Heat transfer analysis was also the subject of
additional research (Rocamora & de Lemos, 1999). One of the outcomes of this development
was the ability to treat hybrid computational domains with a single mathematical tool
(Rocamora & de Lemos, 2000a, Rocamora & de Lemos, 2000b).

Next, major steps taken on the material reviewed above are commented upon. First, the
Microscopic RANS Equations are presented before The Volume and Time-Averaging
operators are discussed. Then, the Macroscopic k-ε equations comprising the proposed
model are presented before comments on some Preliminary Results and Concluding
Remarks are made.



2. MICROSCOPIC RANS EQUATIONS

The Reynolds Averaged Navier-Stokes Equations describe fluid flow in a continuum
medium. For steady state condition they are promptly written as:

Continuity. 0=⋅∇ u (1)
Momentum. )()( 2 uuuuu ′′−⋅∇+∇+−∇=⋅∇ ρµρ p (2)

where u  is the microscopic time-mean velocity vector, ρ is the fluid density, the stresses, p is
the pressure, µ is the fluid dynamic viscosity and uu ′′− ρ  are the well-known Reynolds

stresses. The use of the eddy-diffusivity concept for expressing the stress–rate of strain
relationship for the Reynolds stress appearing in (2) gives,

IDuu kt ρµρ
3
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where tµ  is the turbulent coefficient of exchange, 2])([ TuuD ∇+∇=  is the mean

deformation tensor, k is the turbulent kinetic energy per unit mass and I  is the unity tensor.
Applying (3) to (2) gives further:
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The term (p + 2/3 ρ k) in (4) can be substituted by the total pressure P. In order to obtain an
equivalent expression for the macroscopic Reynolds stress tensor, the volume-averaging
operator with respect to V∆  is normally carried out in both equations (2) and (4).

The low Re k-ε model. The coefficient tµ  appearing in equation (3) is here calculated

through the standard low-Re k-ε model and reads ερµ µµ
2kfct =  where µc  is a constant.

Transport equations for k and ε are given by,

uuuu ∇:′′−=−=+







∇





+⋅∇=⋅∇ ρρεµ

σ
µρ kkkk

k

t PPSSkk ;;)( , (5)

,;)(
2

21 k
fc

k
PcSS k

t ερεεµ
σ
µερ εεε

ε

−=+







∇





+⋅∇=⋅∇ u (6)

The term kP  is the production rate of k and the damping functions µf  and εf  are taken from

Abe et al, 1992. The constants used read 09.0=µc , 5.11 =c , 9.12 =c . The turbulent Pr

numbers for k and ε are kσ  = 1.4 and , εσ  =1.3, respectively. In order to keep a unidirectional

value for the volumetric velocity average Du  (Darcy velocity), the conditions imposed at the
boundaries of the periodic cell of Figure 1b were the non-slip condition at walls, symmetric
profiles at symmetry lines ( 0=y  and 2Hy = ) and periodic boundaries at 0=x  and

Hx 2= .
The set of equations (1)-(4)-(5)-(6) comprises the transport equations necessary for

describing the flow in a clear fluid. All of these equations were discretized in the grid shown
in Figure 1b used to simulate the R.E.V. of Figure 1a. The volume integrated parameters are
used later for tuning the turbulence model proposed.



3. VOLUME AND TIME-AVERAGING

The use of volume and time averaging procedures for obtaining transport equations for k
and ε in porous media is discussed in detail in Pedras & de Lemos, 1999a and Pedras & de
Lemos, 2000a. For clarity of the material here presented, the major ideas therein are here
included.

The macroscopic governing equation for flow through a porous substratum can be
obtained by volume averaging the corresponding microscopic equations over a Representative
Elementary Volume, V∆ . For a general fluid property, ϕ, the intrinsic and volumetric
averages are related through the porosity φ  as (Slattery, 1967, Whitaker, 1969, Gray & Lee,
1977),
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where fV∆  is the volume of the fluid contained in V∆ . The property ϕ can then be defined as

the sum of i〉〈ϕ  and a term related to its spatial variation within the R.E.V., ϕi , as

ϕϕϕ ii +〉〈= (8)
The spatial deviation is the difference between the real value (microscopic) and its intrinsic
(fluid based average) value.

The need for considering time fluctuations occurs when turbulence effects are of concern.
The microscopic time-averaged equations are obtained from the instantaneous microscopic
equations. For that, the time-average value of property, ϕ , associated with the fluid is given
as:
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where t∆  is the integration time interval. The instantaneous property ϕ  can be defined as the
sum of the time average, ϕ , plus the fluctuating component, ϕ ′ :

ϕϕϕ ′+= (10)

From the definition of volume average (7) and time average (9) and assuming a rigid
medium, one can conclude the following properties:

ii 〉〈=〉〈 ϕϕ ;  ′〉〈=〉′〈 ii ϕϕ ;  ϕϕ ii
= (11)

The proofs of identities (11) are found in detail in Pedras & de Lemos, 1999a. In
developing equations (11) the only restriction applied was the independence of V∆  in relation
to time and space. If the medium is further assumed to be rigid, then fV∆  is dependent on

space but is not time-dependent (Gray & Lee, 1977).
With these ideas in mind, a proposition for volume and time averaged transport equation

for k and ε equations can be made.



4. MACROSCOPIC K-ε EQUATIONS

4.1  Model Equation for ik 〉〈 .

In the work of Pedras & de Lemos, 1999a, it was shown that the order of application of
both time and volume average operators is immaterial regarding the final momentum equation
obtained. This is also true for the continuity and energy equations. For clear fluids (φ = 1), the

turbulent kinetic energy defined as 2uu ′⋅′=k  is used by most turbulence models. However,
how to determine k in a porous medium is still an open question. Depending on the order of
application of the average operators, the final governing equation for the flow turbulent
kinetic energy will refer to different quantities.

The starting point for deriving an equation for k is the microscopic velocity fluctuation
u′ . Its transport equation reads:
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From this point on there are two distinct approaches to determine a transport equation
associated with the flow turbulence kinetic energy. One can start with equation (13), take the
scalar product of it by i〉′〈u  and apply the time-average operator. In this method, one uses the

volume operator first followed by time-averaging, leading to 2ii
mk 〉′〈⋅〉′〈= uu  where mk

can be seen as the macroscopic turbulent kinetic energy based on i〉〈 u , the intrinsic velocity
vector.

On the other hand, if one starts out with equation (12) and one takes the scalar product of
it by u ′ before time-averaging, one ends up, after volume averaging, with an equation
for 2iik 〉′⋅′〈=〉〈 uu , where ik 〉〈  is the intrinsic turbulence kinetic energy. Now, using the

double decomposition idea suggested by Pedras & de Lemos, 1999a, one can clarify the
connection between these two quantities as being,
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The last term on the right of (14) is the extra turbulent kinetic energy associated with the
solid structure. As seen, models based on km do not fully account for all of the turbulent
kinetic energy associated with the flow.



An equation for ik 〉〈  is obtained by applying the volume average operator (7) to the
transport equation for k (equation (5) ). Making use of the Dupuit-Forchheimer
relationship, Du =φ  i〉〈 u , a model for it can be proposed as (de Lemos & Pedras, 2000a),
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where kc  and kσ  are constants, K is the medium permeability and i〉′′〈 uuρφ  is given by
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Eq. (16) is similar to the eddy-diffusivity for microscopic flow embodied in equation (3) and
the coefficient. Note, however, that the coefficient φµ t  appearing in (16) and known as the

macroscopic coefficient of exchange, is not necessarily the same coefficient appearing for clear
fluid flow used in (3). Also, the introduced constant kc  needs to be determined for closure of

the mathematical problem. The methodology established for finding it is discussed in Pedras
& de Lemos, 2000c, and consists mainly in comparing the volume average values with the
model results for the periodic cell of Figure 1b.

4.2 Model Equation for i〉〈ε .

Making use of the Dupuit-Forchheimer relationship, Du =φ  i〉〈 u , a transport equation for
i〉〈ε  can be proposed as,

,
||

)(

)()()()(

2

21












〉〈
〉〈−〉〈+

〉〈
〉〈∇:〉′′〈−+









〉〈∇+⋅∇=



 〉〈⋅∇+〉〈
∂
∂

i

i
D

i

ki

i

D
i

iti
D

i

kK
cc

k
c

t

εερφερ

εφ
σ
µ

µεεφρ

εε

ε

φ

u
uuu

u

(17)

where, kσ , ε1c  and ε2c  are constants. As with the case of ik 〉〈 , the overall dissipation rate of
i〉〈ε , the last term on the right of (17), contains an additional factor that is dependent on the

porous substrate. This additional term vanishes for the limiting case of clear fluid
( ∞→>=→ K1φ ). In addition, for macroscopic fully developed uni-dimensional flow in

isotropic and homogeneous media, the production rate of i〉〈ε  will be solely due to spatial
deviations within the R.E.V. and will be totally dissipated within the same domain. These
ideas are used in de Lemos & Pedras, 2000a when determining a numerical value for the
introduced constant kc .

5. PRELIMINARY RESULTS AND CONCLUDING REMARKS

In summary, this research has shown that both average operators for time and volume
commute when obtaining the macroscopic governing equation for momentum. The order of



application of the operators is immaterial and the equations end up having the same form,
However, when obtaining macroscopic transport equation for the turbulent kinetic energy, the
order of application of averages will imply in a different quantity being transported.

An example of the computational work done so far is presented below with the help of
Figure 2. This preliminary case consisted in computing laminar flow in a heated channel past
a porous obstacle. The data used is detailed in Table 1 where all dimensions can be found.
Figure 3 shows results for the velocity and temperature fields. The tick mark values appearing
in Figure 3 refer to the schematic of Figure 2 and corresponding data in Table 1. The vector
plots show, at the top and right edge of the obstacle, an increasing mass flow rate as the
permeability increases. Ultimately, for a higher K the temperature pattern, as expected,
resembles the one for clear flow in channels (Rocamora & de Lemos, 2000b).

Another example of computational work done to complete the proposed model (equations
(15)-(17) ) is reproduced in Figure 4. Therein the flow in a channel filled with a porous
material crosses a cavity in the middle of the channel. The cavity itself has a different porosity
than the surrounding medium. For high cavity porosity and permeability, the flow is pushed
inside the cavity where is encounter less resistance. As the cavity porosity decreases, less
fluid penetrates through it, up to the limiting case of a solid obstacle. Interesting to note is the
absence of a weak region behind the solid obstacle (Figure 4c) when compared to flow of
clear fluid past the same obstruction. The flow resistance due to the porous structure quickly
flattens the velocity profile and boundary layers are confined to a narrow region of the flow.
The turbulence kinetic energy rapidly increases within the channel if one considers the inlet
condition assumed ( ik 〉〈  = i〉〈ε  = 0 at inlet). The level of ik 〉〈  decreases close to the cavity
boundaries and within it. This decrease is a consequence of a higher porosity and permeability
within the cavity that, in turn, decreases the extra production term responsible for ik 〉〈
generation within the porous domain.

These and other results are used to tune the proposed model which, ultimately, aims at a
better understanding of turbulent flow through porous structures.

Figure 2 - Problem geometry and dimensions.

Table 1 - Parameter values for the geometry of Figure 2

L(m) 0.10
H(m) 0.02

Tin (
0C) 50.0

Tw (0C) 100.0
Fluid air

Pr 0.7
µ(Ns/m2) 1.8 10-5
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