
NON NEWTONIAN PROPERTIES OF EMULSIONS

Francisco Ricardo Cunha{ frc@orion.enm.unb.br

Aldo Jo~ao de Sousa{ aldo@orion.enm.unb.br

Universidade de Bras��lia, Departamento de Engenharia Mecânica-FT

Campus Universit�ario, 70910-900 - Bras��lia, DF, Brasil

Jerzy Blawzdziewicz { jerzy@taylor.enc.yale.edu

Michael Loewenberg { michael@taylor.eng.yale.edu

Yale University, Department of Chemical Engineering

New Haven, CT, 06520-8286, USA

Abstract. In this paper, three-dimensional boundary integral computer simulations of emul-

sions in oscillatory shear ow will be described. We obtain results for ordered BCC emulsions

with dispersed-phase volume fractions below the critical concentration �c = 68% (maximum pack-

ing for BCC). Complex rheological features including: shear-thinning viscosities, normal stress

di�erences, and a nonlinear frequency response are explored. We have derived analytical results

for slightly deformed drops in diluted emulsions at arbitrary shear-rates, which is particularly

relevant to drops with viscosity ratios beyond the critical value for breakup in shear. Using

our analysis and numerical simulations, we also explore the limiting high shear-rate rheology of

diluted emulsions with high viscosity drops.

1. INTRODUCTION

An emulsion is an immiscible mixture of two uids , one of which is dispersed in the con-

tinuous phase, typically made by rupturing droplets down to colloidal sizes through mixing. To

inhibit coalescence a surfactant which concentrates at the interfaces must be added to create

a short-ranged interfacial repulsion between droplets. Emulsions arise in a wide range of ap-

plications relevant to the materials processing, food processing, cosmetics, and pharmaceutical

industries (Edwards, Brenner & Wason 1991, and Stone 1994). Emulsion rheology is diÆcult

to predict or control because of the complex interplay between the detailed drop-level micro-

physical evolution and the macroscopic ow. Currently, there is an active interest emulsions

for a diverse range of applications. Due to the complexity of these systems, however, there has

been little progress towards a fundamental basis for understanding and predicting the rheology

of such comples systems.

Emulsions posses microscopic mechanisms for both elastic and viscous dissipation. The en-

ergy storage and dissipation per unit of volume can be represented by the frequency-dependent

complex viscoelastic shear modulus ��(!; �), which is de�ned only for strain amplitude o suf-

�ciently small so that the shear stress is linear in strain or in the rate of strain. Here ! is the

frequency and � is the droplet volume fraction. The real part �0(!; �) is the in-phase ratio of



the stress with respect to an oscillatory rate of strain, and reects viscous mechanism, whereas

the imaginary part �00(!; �), is the out-of-phase ration of stress and reects elastic mechanism.

Linearity and causality imply that �0(!; �) and �00(!; �) are interrelated by the Kramers-Kronig

relations (Bird el al. 1987) indicating their inherent link to the dissipation of shear stress and

the strain uctuations in an emulsion. Understanding the behavior of these quantities over a

wide range of ! and � would provide valuable insight into the importance of the elastic and

dissipative mechanism as the emulsion become packed and deformed.

Relevant to the theoretical part of the present work are the studies of Schowalter, Chafey

& Brenner (1968) and Frankel & Acrivos (1970) of the e�ect of drop deformation on the rheol-

ogy of a dilute emulsion, and analyzes by Barth�es-Biesel & Acrivos (1973) and Rallison (1980).

Progress is being made through the use of experiments and numerical simulations. Experiments

are very challenging due to diÆculties in characterizing these systems (e.g. Mason et al. 1997).

Computer simulations provide a potentially valuable tool for helping to understand the mi-

crostructural mechanisms of emulsions ows but they are at an early stage (Mo & Sangani 1994;

Li, Zhou & Pozrikidis 1995; Loewenberg & Hinch 1996). Numerical simulations of more con-

centrated emulsion ow is needed to help with the interpretation of experimental observations

and to predict the rheology and microstructure of disordered emulsion ows. In this article, we

present results of small deformation analysis and numerical simulations of emulsion dynamics

in oscillatory shear.

2. THEORY

Consider the creeping ow motion of an emulsion of freely suspended droplets, with radius

a, undergoing oscillatory shearing ow �eld _o cos(!t). Let _o be the magnitude of the oscillatory

shear, �o is the continuous-phase viscosity and � the interfacial tension. We non-dimensionalize

all velocity by �=�o and all lengths by a. The relevant parameters for the problems here include

the dispersed-phase volume fraction �, the dispersed- to continuous-phase viscosity ratio �,

the capillary number and Strouhal number. The capillary number is de�ned as the shear-rate

normalized by the drop relaxation rate �=�oa

Cao =
�o _oa

�
; (1)

The Strouhal number is relevant to problems involving oscillatory shear ow. It is the ratio of

the imposed oscillation frequency ! to the drop relaxation rate:

Sh =
�o!a

�
: (2)

2.1. Governing equations

In the regime of low Reynolds number, incompressible uid motions are governed by the

Stokes and continuity equations

�rP + �or2u = 0 and r � u = 0; (3)

Here, u is the Eulerian velocity �eld, P is the modi�ed pressure P = p � �g � x, �o and � are

the uid viscosity and density,respectively, g is the gravitational acceleration, x is the position

vector and p is the mechanical pressure.



2.2. Boundary Conditions.

The boundary conditions at a drop interface Si with surface tension � require a continuous veloc-

ity and a balance between the net surface traction and surface tension forces (Pozrikidis 1992).

Mathematically, these conditions are expressed as

u! u1 jxj ! 1; u(x) = u0(x); x = xi 2 Si (4)

and the traction jump (discontinuity in the interface surface tension) at the interface [n � �], is
written as (Pozrikidis 1992)

�t = [n � �] = ��n� (I� nn) �r�: (5)

Here (I�nn)�r denotes the gradient operatorrs tangent to the interface, I is the identity tensor

and n is the unit normal vector to Si. r
s � n de�nes the mean curvature of the interface �. In

general, it can be expressed as the sum of the inverse principal radii of curvature � = R�1
1 +R�1

2 .

This article considers the case of clean interface deformable drops (no Marangoni stress) and

the drops are neutrally buoyancy. Under these conditions the interface is treated with uniform

surface tension and the traction discontinuity given in (5) reduces to

�t = ��n: (6)

The interface evolution may be described with a Lagrangian representation Dxi=Dt = u(xi) .

2.3. Stress and linear viscoelastic response

The average stress � of an emulsion is described as follows (Landau & Lifshitz 1987),

� = �P I+ 2�oE+ ��0: (7)

The �rst two terms on the RHS are the contributions from the background continuous phase (i.e.

a newtonian e�ect) with an average pressure P and an average rate of strain E. Here ��0 is

the average stress contribution of the dispersed phase (i.e. a non-newtonian e�ect) due to drop

deformation and orientation, and interactions between them. The average shear-rate of the ow

can be de�ned as _ =
q
(1=2)Tr(E � E). For the case of oscillatory simple shear considered here

_(t) = E12 = _oe
i!t, where t denotes time, ! and _o are the frequency and the amplitude of the

oscillations, respectively.

When the strain or the rate of strain in a system is small its response is linear. Then, whether

an emulsion is subject to small amplitude simple shear the ow is u = ( _ox2e
i!t; 0; 0). The stress

of the system oscillate with the same frequency but not necessarilly in phase. Based on a linear

viscoelastic formulation for dilute limit of an emulsion (Cunha, Toledo and Loewenberg, 1999),

we have developed a Maxwell model with a single relaxation time. According to this model, the

in-phase part of the response (viscous dissipation) is found to be �0(!) =
�o+�1�2

o
!2

1+�2
o
!2

, whereas

the out-of-phase ration of stress reecting elastic e�ect is given by �00(!) = (�o � �1) !�o

1+�2
o
!2
.

Here �o =
1+5�=2
1+�

(Taylor's viscosity 1932) is the viscosity in the limit of low frequency, whereas

�1 =
5(��1)
2�+3

is the viscosity in the limit of high frequency corresponding to the viscosity of

an emulsion composed of spherical blobs (surface tension is an unimportant e�ect). Here �o =

40(2� + 3)(19� + 16)(� + 1)�1 is a single drop relaxation time.

Following the model above, the drop stress contribution, for any concentration, can be

expressed in an appropriate form as a purely viscous contribution plus a complex stress contri-

bution from the surface tension, ��. �0 = �1(!; �) _ +��. Now, a complex viscosity �� can be



de�ned from �� = ��(!; �) _(t), and �� is obtained from the stress relation function spectrum

�(t; �) by using the convolution integral (Bird et al. 1987),

�� =

Z
t

�1

�(t� t0; �) _(t0)dt0: (8)

Aternatively we may de�ne the complex viscosity in terms of the stress relaxation function,

directly. By Fourier transformation we can show that

��(!; �) = �0(!; �) � i�00(!; �) =

Z
1

0
�(�; �)e�i!�d� (9)

The stress relaxation function is de�ned, for example, as the response of the system to step strain

_(t) = oÆ(t). Here we de�ne the average relaxation time �(�) = �0(0)=�(0) by the integral

�(�) =
1

�(0)

Z
t

0
�(t0; �)dt0: (10)

It is instructive to note that for dilute limit of emulsions � = �o and �(0) = �o = �o=�o. The

simplest model for the system studied here is one relaxation time Maxwell model

�(t) = �oe
�t=�o ; with ��(!) =

�o

��1o + i!
: (11)

Dilute emulsion are well described by such a model. On the other hand, it will be shown in

x4 that a multiple relaxation time Maxwell model, as de�ned bellow, is needed to describe

the behaviour of concentred emulsions undergoing oscillatory shear with small amplitudes and

arbitrary frequencies, �(t) =
P

k �ke
�t=�

k .

3. NUMERICAL SIMULATIONS

All simulations rely on the boundary integral method. Periodic boundary conditions are

enforced through the use of periodic Green's functions. These are obtained by Ewald summation

using accurate computationally-eÆcient tabulation of the nonsingular background contribution

(Loewenberg & Hinch 1996).

We develop two and three-dimensional boundary integral simulations that are capable for

describing the dynamics of concentrated random emulsions in oscillatory shear. Accordingly,

the evolution ofM deformable drops is described by time-integrating the uid velocity u(xo) on

a set of interfacial marker points xo on each drop surface. The uid velocity is governed by the

second-kind integral equation on the interfaces Sm (m = 1; � � � ;M) of all drops in the simulation

(Rallison & Acrivos 1978) :

uj(xo)�
�� 1

�+ 1

3

2�

X
m=1

Z
Sm

uiTijknkdS = Fj(x); (12)

where T is the periodic stresslet (Loewenberg & Hinch 1996), and F(xo) is de�ned as below

Fj(xo) =
2

�+ 1
xjoÆ2jCa (t)�

1

�+ 1

1

4�

X
m=1

Z
Sm

�tiGijdS: (13)

G is the periodic stokeslet (Beenaker 1986, Cunha 1995) O(1=r) for the 3D case and Ca(t) =

Cao cos(Sh t) for oscillatory shear e Ca(t) = Cao for stationary shear. In the absence of

Marangoni stresses the traction jump across the drop interfaces is given simply by �tj = ��nj ,



where � is the mean curvature and n is the normal vector.

The boundary integral simulations here uses an adaptive discretization of the drop interface

that depends only on the instantaneous drop shapes. It is independent of the uid velocity and

the history of drop deformation. In particular, the algorithm incorporates a prescribed marker-

point density function (interface area per marker point) that is used to de�ne an equilibrium

edge length between marker points. This density function resolves the minimum local length

scale everywhere on the drop interface. Equilibration velocities for marker points are determined

by the resultant of local spring-like tensions projected onto the drop interface. The resulting

dynamical system of damped massless springs has a well-de�ned minimum energy equilibrium

state that is attained in several iterations after every uid dynamic displacement of the marker

points. Marker point equilibration is an inexpensive O(N) calculation compared to the time-

controlling O(N2) uid velocity calculation. The interface discretization algorithm maintains

optimal marker-point connectivity using a local reconnection rule. Accordingly, the edge between

adjacent triangles is switched to connect opposite vertices if the resulting edge is shorter. By

maintaining a nearly equilateral triangulation, this procedure maximizes the time step for the

time-controlling uid dynamical calculations (Cristini et al. 1998). The normal vector and

curvature were calculated by the local surface-�tting algorithm of Zinchenko et al. (1997).

The uid velocity on the drop interfaces is obtained by an iterative solution of (12) using

the GMRES algorithm (a generalization of the conjugate gradient method to non-symmetric

matrices) to achieve convergence for the closely-spaced interface con�gurations that characterize

dense emulsions.

In Fig. (1) two drop shapes are depicted for steady and oscilattory shear ows, respectively.

An inspection of the drops in Fig. (1) illustrates that the adaptative discretization resolves

regions of high curvatures where a high density of marker points is needed. In particular, Fig. 1 a

shows that drops with suÆciently high viscosity (in this result � = 3:8) the characteristic time for

drop deformation (1+�)�a=�, exceeds the characteristic time for drop rotation, 1= _; hence the

drop rotates from the extensional to the compressional quadrant of the velocity gradient before

being signicantly deformed, and this prevents breakup. Cunha, Toledo & Loewenberg (1999)

have shown theoretically that dilute emulsions with high viscosity drops are shear thinning

and have normal stresses at high shear rate. This behavior is a direct consequence of drop

deformation and alignment with the ow such as it is shown in this �gure. The result depicted

in Fig. 1b shows that drops with small viscosity can break in oscillatory shear with large strain

amplitudes.

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

y

x

(b)(a)

Figure 1: Adaptative surface discretization. (a) Stationary drop shape of a viscous drop in a

steady simple shear; � = 3:8 Cao = 1:8 and initial number of marker points No over drop surface

equal to 1000. (b) Drop in oscillatory shear; � = 1, Cao = 0:8, Sh = 0:08, and No = 252.

The volume-averaged stress tensor � is evaluated numerically from an integral of the trac-

tion jump and uid velocity over the drop interfaces. Following Batchelor (1970) ones obtain

h�i =
1

V

NX
i=1

Z
Si

f(��xn+ �(�� 1)(un+ nu)g dS(x): (14)



Equation (14) is the contribution of the dispersed phase to the macroscopic stress of the emulsion

due to the dipole stresslet that each drop torque free generates in the ow.

4. RESULTS

Fig.2 shows a typical numerical result of an isolated high viscosity drop (� = 5) deforming

in oscillatory shear with a dimensionless shear rate (capillary number) Cao = 3 and Sh = 0:5.

The motion is periodic and the drop deforms, rotates, but it does not break under the conditons

of this simulation.

t π/ω 0 0.4 0.8 1.2 2.01.6=

Figure 2: Simulation of high viscosity drops in oscillatory shear (� = 5) with Ca = 3 and

Sh = 0:5. Three-dimensional mesh is shown for No = 1000 nodes.

The results depicted in Fig.3 shows the comparison between the drop shear stress contri-

bution predicted theoretically and the boundary integral simulations for the following set of the

physical parameters: Ca = 3:0, and Sh = 0:5. We have explored the limiting high shear-rate

rheology of diluted emulsions with high viscosity drops. Even at high capillary number (i.e.

strong ow) no large deformation results for high viscosity drop because the extended part of

the shape is spun round into the compression before it has extended far. When the equilibrium

is such that the slightly deformed droplet has its principal extended axis in the direction of the

ow, the viscous dissipation within the external uid is decreased as a direct consequence of less

distortion in the ow streamlines, and a shear thinning behavior may be observed with the pres-

ence of normal stress di�erence. We �nd that the behavior of high viscosity drops depends on

three rates: the shear-rate _o, the oscillation frequency !, and the drop relaxation rate �=��oa.

At low shear-rates, the system exhibits a linear viscoelastic response and a nonlinear behavior

occurs for large shear-rates. In these plots the analytical expressions for the drop shear stress

contribution and the �rst normal stress di�erence were developed by Cunha & Loewenberg,

1999.
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Figure 3: Drop shear stress contribution as a function of the phase for oscillatory shear with

Ca = 3:0 and Sh = 0:5. Comparison between a �rst order high � theory (solid curve) and the

boundary integral simulations � � = 5, 2 � = 10 and + � = 20 . The dashed curve corresponds

to the solution for stationary shear with � �12

��o _
= 5c

c2+Ca2
.

In Figs. 4 and 5 it is shown the linear viscoelastic quantities �0 and �00 as a function of the

frequency for di�erent concentrations based on boundary integral simulations of a monodisperse



BCC emulsion with viscosity ratio � = 1. At all �, we observe a low-frequency regime in which

�0 is independent of the frequency and the elastic contribution is null. It is seen that the low-

frequency plateau for � = 60% is about four times bigger than its value for dilute emulsion.

The high-frequency rise reects the fact that the system is composed solely of uid (i.e. an

emulsion of blobs, no e�ect of surface tension takes part), whose viscous behavior dominates at

suÆciently high frequencies.
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Figure 4: The frequency dependence of the viscous modulus �0 of a monodisperse BCC emulsion

with � = 1:0 for volume fractions �, ranging from 0 to 0:6. Dashed curves are numerical results

from boundary integral simulation whereas the solid curve is predicted by linear viscoelasticity

theory for dilute emulsion.
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Figure 5: The frequency dependence of the elastic moduli �00 of a monodisperse BCC emulsion

with � = 1:0 for volume fractions �, ranging from 0 to 0:6. Dashed curves are numerical results

from boundary integral simulation whereas the solid curve is predicted by linear viscoelasticity

theory for dilute emulsion.

Next we present preliminary results of 3D step strain simulations for drop concentration

below the maximum packing of spherical drops (� < �c = �
p
3=8) and viscosity ratio � = 1.

The emulsion was subject to a step strain and allowed to relax and we measure the response.

Fig.6 shows the dimensionless stress relaxation function as a function of the time normalized

by the average relaxation time for three di�erent concentrations: dilute (� < 0:3), 0.5 and 0.66.

It is seen that the dilute system has a simple exponential decay and one relation time Maxwell

model describes well the response of the system. For all volume fraction simulated it is observed

a long time exponential decay, but short time scales show some multiple time scales , specially

at highest volume fraction shown (� = 0:66).

Relaxation times can be extract directly from our numerical simulations. The spectrum
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Figure 6: Normalized stress relaxation function from 3D step strain simulations as a function of

time for several concentrations. Ordered BBC lattice with � = 1. Dot lines are the exponential

decay.

of these relaxation times is shown in Fig. 7. It is seen that the long time mode diverges

and dominates the average relaxation time. At higher concentrations it is clear the presence of

multiple modes (i.e. multiple time scales) that should be attributed to the higher order multipole

interactions between the drops and the lubrication resistence between them. In particular, from

Fig.7, it can be seen that the frequency response of a dilute emulsion can be described by one

relaxation time, whereas four relaxation times is needed to describe the response of the system

at 66%. The results obtained for the real (i.e. viscous contribution) and imaginary (i.e. elastic

contribution) parts of the complex viscosity are presented in Fig.7. As it can be seen a multiple

relaxation time Maxwell model using the spectra shown in Fig.7 describes well the viscoelastic

reponse of an BCC emulsion at 66% drop volume fraction.
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Figure 7: Relaxation time distribution for several concentrations. Boundary integral simulation

of a BBC emulsion for � = 1 that was subject to a step strain.
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Figure 8: The frequency dependence of the viscoelastic quantities for dilute regime and � = 0:66.

Ordered B.C.C. emulsion with � = 1. The dashed solid curve corresponds to the numerical

results and coinciding line is a four relaxation time Maxwell model.

5. CONCLUSIONS

In this work we have presented results for the frequecy response of an emulsion in oscilattory

shear. The results reveal a complex rheology of emulsions at dilute and moderated regime of

drop volume fraction below critical. The main conclusions of this work are: i) The stress

relaxation function decay exponentially at long time for all concentrations tested; ii) The spectra

relaxation time was found to be discrete for ordered BBC emulsion; iii) The average relaxation

time diverges and this divergence was related to the lubrication resistense between the drops

when �! �c; iv) Dilute emulsion (� < 30%) are well described with one relaxation time Maxwell

model, whereas a superpositon of four relaxation time Maxwell model is needed for describing

sucessfully the viscoelastic response of an emulsion with drop volume fraction 66%. We plan

in a future work explore, in more details, the behaviour of emulsions for concentrations above

the critical volume fraction when it is expected this complex system exihibiting yields stress. In

addition we intend to investigate the e�ect of �nite strains on the rheology of disordered dense

emulsions in oscillatory shear.
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