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Abstract. Polymeric matrix composites (PMC) are used in engineering applications

as they present low density and high strength. However, they are not used in large{scale

applications due to their high cost. The large variety of thermoplastic matrices allow us

to experiment di�erent types of resin combinations creating the so{called melt-blended

matrices. In this model, a binary combination of thermoplastics is used to form a fully

recycled melt-blended matrix. The HDPE/PET matrix is assumed to be composed by

PET spheroidal inclusions diluted in a HDPE substrate, and the resulting matrix is used

to form a unidirectional laminated polymeric matrix composite. Due to chemical reac-

tions involved during the matrices combination process and between the resulting matrix

and the E-glass �bers, the weak interface �ber/matrix condition must be considered. To

model the thermal-elastic behavior of HDPE/PET-E glass �ber composites a double step

homogenization procedure is proposed. The concentric spheres model is applied to obtain

the melt-blended matrix e�ective properties, and to describe the overall composite behav-

ior the composite assemblage model under weak interface condition is considered. The

new expression proposed for the e�ective transverse thermal conductivity is based on the

analogy between shear loading and conductivity. The numerical simulations are compared

against analytical models, Hashin and Rosen, and the representative volume element ap-

proach with good agreement.

Key words:Bound for Thermal Conductivity, Laminated Polymeric Matrix Composites,
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1. NOMENCLATURE

a, b �ber and matrix radii

Dn, Ds, Dt material spring constants

GA axial shear modulus

�q heat 
ux

t interface thickness

�T temperature variation

[un], [us], [ut] interface displacement jumps

vf , vi, vm �ber, interface and melt-blended matrix volume fractions


 number of recyclings

� thermal conductivity

 mutation ratio

� stress

Subscripts:

A, T axial and transverse directions

f, i �ber and interface

-i, +i interface's borders to �ber and melt-blended matrix

M, m1, m2 melt-blended, inclusion and suspension matrices

n, s, t mutual orthogonal system of axis

Superscript:
� e�ective property

2. INTRODUCTION

Polymeric matrix composites are attractive to engineering applications due to their

light weight and high strength. However, their cost is still prohibitive for most of the

emergent countries. The use of melt-blended matrices, formed by two immiscible poly-

mers, is an alternative solution for cost reduction of polymeric matrix composites. Such

idea is growing in research centers and industries thanks to the large variety of polymeric

matrices { in special thermoplastics { and their low cost, e.g. polyethylene terephtalate

(PET) has an approximate cost of 12 cents/kg while high density polyethylene (HDPE)

costs around 8 cents/kilo. Such low cost is due to the large amount of post-consumer

plastic waste generated daily in large cities worldwide.

Researchers like Sanches et al. (1997), Avila and de Miranda (1999) and Avila (1999a)

have been studying recycled polymeric composites trying to model its thermal-mechanical

behavior in order to use them in new engineering applications. In their work, Sanches et

al. (1997) studied the thermal degradation of polycarbonate (PC), polybutylene tereph-

talate (PBT), and its blend (PC/PBT). They are more interested in the thermal-chemical

reactions during elevated temperature situations, no attention is given to the analysis of

the mechanical properties. Avila (1999a), however, tries to model the mechanical prop-

erties of recycled polymeric matrix laminated composites (PP/PET-E glass). His work

is focused on the �ber/matrix interface condition. When recycled polymeric matrix com-

posites are considered , it is important to study the interface �ber/matrix adhesion due to

chemical reactions between the melt-blended matrix and the �bers. To be able to model

the combined e�ects of thermal and mechanical loadings, the thermal-elastic properties

must be studied and analyzed.

This paper is concerned about the thermal-elastic analysis of melt-blended polymeric
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Figure 1: Interface region

matrix composites where the weak interface �ber/matrix condition is applied. Special

emphasis is given to the e�ective thermal conductivity of such class of materials. To do

this type of analysis, a double step homogenization procedure is proposed.

3. DOUBLE STEP HOMOGENIZATION PROCEDURE { S2HP

The double step homogenization procedure is composed of two individual homogeniza-

tion procedures. They are applied in a such way that there is a one-way in
uence from

the pre-homogenization procedure (also called primary homogenization) into the post-

homogenization (sometimes called secondary homogenization). As we are dealing with

recycled composites where the weak/imperfect interface is considered, it should be worth

to establish the di�erences between perfect and imperfect interface conditions. Hashin

(1990) states that for a perfect interface condition it is assumed that tractions and dis-

placements are continuous across the interface. To be able to model the imperfect/weak

interface situation it is assumed that normal and tangential interface displacement jumps

are each proportional to their associate traction components as in Hashin (1992). Thus,

with reference to Fig. 1,

�m
nn

= �f
nn

= Dn [un] (1)

�m
ns
= �f

ns
= Ds [us] (2)

�m
nt
= �

f

nt = Dt [ut] (3)

The spring constants are material parameters which have the dimension of stress divided

by their length. Hashin (1990) calls these constants the interface parameters. In�nite val-

ues of these parameters are equivalent to perfect bonding, where the displacement jumps

go to zero.

3.1 Pre-Homogenization - Concentric Spheres Model

On this phase of the S2HP , the melt-blended matrix is assumed to be formed by

spheroidal inclusions in a suspension solution. It is also assumed that the two matrices

are perfected bonded. Therefore, there is no interface between the two blended matrices.

The mechanical properties of such blend can be estimated using the models developed by

Hashin and Shtrikman (1963) and Christensen and Lo (1979), in which the idea of con-
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Figure 2: Melt-blended matrix microstructure

centric spheres is presented, are applied. By analyzing Figure 2, it is possible to conclude

that the actual microstructure can be represented by the concentric spheres model. The

choice of the concentric spheres array is due to the possibility of applying association in

series of thermal conductivity for the two blended matrices (Incropera & Dewitt, 1996) .

To be able to use the thermal conductivity association in series proposed by Incr-

opera & Dewitt (1996), some preliminary assumptions must be made. It is assumed that

the overall melt-blended matrix is isotropic and its components are also isotropic. The

melt-blended matrix e�ective thermal conductivity is given by

��
M
=  1�m1vm1 +  2�m2vm2 (4)

The mutation ratio is a linear functional de�ned by Avila (1999b) that arti�cially

change the material properties due to the recycling process. For the PET, for example,

Avila (1999c) proposed the following 5th order polynomial expression:

 = �0:009
5 + 0:1146
4 � 0:5494
3 + 1:221
2 � 1:1672
 + 1 (5)

It should be mentioned that the following expression must be applied to the melt-

blended components.

vm1

vm
+
vm2

vm
= 1 (6)

3.2 Post-Homogenization - Composite Cylinder Assemblage Model

The post-homogenization procedure is based on a modi�ed version of the compos-

ite cylinder assemblage model where a weak interface is considered (Hashin, 1990;Avila,

1999a). In the present model the interface properties are calculated using either the rule

of mixtures or the modi�ed rule of mixtures (Tsai & Hahn, 1980). The overall composite

behavior is considered transversely isotropic due to the composite con�guration (unidi-

rectional). In this case, it is observed that the inclusion of the weak interface �ber/matrix

causes no signi�cant in
uence into the axial thermal conductivity. Considering a random
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array of �bers, a representative volume element can be isolated, and the e�ective axial

thermal conductivity can be written as,

��
A
= ��

M
vm +  f�fvf + �ivi (7)

where

vf =

�
a

b

�2

(8)

vm =
b2 � (a + t)

2

b2
(9)

vi =
(a+ t)

2
� a2

b2
(10)

We will assume that �bers are always virgin materials due to the problems involved in

their recycling process. Therefore, for us  f is equal to one.

The only unknown variable in Eqs. (7) is the interface's thermal conductivity. By

using the analogy between the shear loading and the thermal conductivity proposed by

Springer and Tsai (1967), the interface's thermal conductivity can be expressed as

1

�i
=

1

vf + �vm

 
vf

 f�f
+ �vm

1

��
M

!
(11)

where

� =
1

4 (1� vm)

 
3� 4vm +

��
M

 f�f

!
(12)

An alternative way of computing the interface's thermal conductivity is given by rule of

mixtures (Tsai & Hahn, 1980).

We now have to derive the e�ective transverse thermal conductivity (��
T
) for a two

phase composite under weak interface �ber/matrix condition. To do so we use the anal-

ogy between the axial shearing and the transverse thermal conductivity. Hashin (1979)

observes that the governing di�erential equations for the axial shearing and the trans-

verse thermal conductivity have the same form, including the boundary conditions. He

concludes that there is a mathematical equivalence of the following quantities

GA  ! �T (13)

Based on this complete equivalence, the following expression is proposed for modeling

the e�ective transverse thermal conductivity under weak interface �ber/matrix condition.

This new expression can be written as

��
T
= ��

M
+

vf
1

�e��
�

M

+ vm

2��
M

(14)

where

�e =
 f�f

1 +
 f�f

�i(a=t)

(15)

Although Hashin (1979) had pointed out the mathematical equivalence between the

shear loading and the conductivity he never proposed an expression for modeling thermal
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Figure 3: Representative Volume Element

conductivity where the weak interface �ber/matrix was considered. We are going one step

further not only by using Hashin's idea and proposing an expression for �T , but also by

assuming that the interface's thermal conductivity can be modeled by the modi�ed rule

of mixtures.

Expressions (7) and (14) represent the axial and the transverse thermal conductivity

under weak interface condition for a transversely isotropic composite which complete the

double step homogenization procedure. It is important to mention that the thermal con-

ductivity expressions derived by Hashin (1979) for a transversely isotropic unidirectional

composites under perfect interface condition are considered in this paper for benchmark

purposes.

4. REPRESENTATIVE VOLUME ELEMENT APPROACH - RVE

The representative volume element approach is a numerical technique which isolates

a composite's unit cell. Such unit cell represents the composite's microstructure smallest

portion which is repeated over the entire composite. Then, after the imposition of speci�c

based boundary conditions and the use of the energy conservation laws it is possible to

compute its e�ective properties. According to Springer and Tsai (1967) and the author's

conclusions, it is feasible to assume that the e�ective axial thermal conductivity can be

expressed by Eqs. (7) with accuracy. Therefore, the attention will be focus on the e�ec-

tive transverse thermal conductivity.

The RVE proposed is a variation of the one applied by Springer and Tsai (1967) for

computing ��
T
. In current model, the interface �ber/matrix is introduced (see Fig. 3),

and the following boundary conditions are applied,

�
@T

@y
= 0 for y = 0 and y = W (16)

T = T
�L T = T+L at x = �L (17)

There is no thermal resistance between any phase or the interface. This assumption is
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Material � [W/m-K]

HDPE 0.5

PET 0.2

E-glass 1.0

Table 1: Material properties

Model Applied � [W/m-K]

Rule of Mixtures 0.628

Modi�ed Rule of Mixtures 0.562

Table 2: Interface Thermal conductivity

equivalent to ������f @T@n
�����
f

=

������i@T@n
�����
�i

(18)

������m@T@n
�����
m

=

������i@T@n
�����
+i

(19)

Here n represents the normal direction to the considered border. Once the boundary

conditions are applied the heat 
ux (�q) can be computed, and the composite e�ective

transverse thermal conductivity can be de�ned as

��
T
=

2L�q

�T
(20)

Expression (20) will provide equivalent values of those given by Eqs. (14).

5. NUMERICAL SIMULATIONS

To illustrate the double homogenization procedure, let's consider a fully recycled poly-

meric matrix laminate composite. It is assumed that PET spheroidal inclusions are diluted

in a HDPE matrix. The perfect interface condition is applied to the melt-blended matrix

and the weak interface �ber/melt-blended matrix is assumed. Once the HDPE/PET melt-

blended matrix is homogenized, the resulting matrix is applied to E-glass unidirectional

�bers. The relative �ber/matrix volume fraction is de�ned as 0.40/0.60, respectively. The

ratio HDPE/PET volume fraction is 0.60/0.40. It means that 60% of the melt-blended

matrix is composed of HDPE and the remaining is PET. The material properties are from

Jones (1994) and they are listed on Table 1. The interface properties evaluated based on

the rule of mixtures and the modi�ed rule of mixtures are shown in Table 2.

To be able to analyze how the interface �ber/matrix in
uences on the overall com-

posite e�ective properties, two sets of interface conditions are studied. In the �rst set,

the interface properties are calculated by the rule of mixtures. Three di�erent interfaces

are considered: perfect interface (interface thickness/�ber diameter equals to zero), and

two distinct interface conditions t=a = 0:1 and t=a = 0:02. In the second set of results,

the interface properties are based on the modi�ed rule of mixtures. The same interface
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Figure 4: Finite Element Mesh

Interface S2HP RVE Rosen Hashin

��
A

��
A

��
A

��
A

[W/m-K] [W/m-K] [W/m-K] [W/m-K]

t/a=0.0 0.7768 0.7768 0.7768 0.7768

t/a=0.1 0.7765 0.7765 { {

t/a=0.02 0.7768 0.7768 { {

Table 3: ��
A
described by the rule of mixtures

conditions are studied. The results from the S2HP are compared against the RVE ap-

proach simulations.

The RVE approach is implemented by using the �nite element commercial package

NASTRAN. In this case, the six noded triangular elements are used to generate the �nite

element mesh. The RVE mesh is shown in Fig. 4, and it is composed of 1261 nodes and

608 elements.

The results summarized in Tables 3 though 6 are numerical predictions based on

S2HP , the equations prposed by Rosen (1970), the Hashin's (1979) lower and upper

bounds and the RVE approach for a temperature variation of 60 oC. It should be men-

tioned that the material properties are considered constant for such class of temperature

variation. The maximum temperature is such that no thermal-chemical degradation is

observed. In a preliminary analysis the temperature variation of 60 oC may be seen un-

realistic, however this value was chosen to avoid numerical problems, e.g. catastrophic

cancellation (Carnahan et al., 1969) on the heat 
ux calculation due to the RVE real size.

It seems that the interface model has direct in
uence into the overall composite

behavior. As the interface parameter (t=a) approaches to zero, which is equivalent to per-

fect bonding, the results from the S2HP are closer to the Hashin's 1979 results. For the

t/a=0.0 the relative error, considering the Hashin's lower bound as a benchmark, for ��
T

is around 1:3% for the RVE approach by using the rule of mixture or the modi�ed rule of

mixture. The results from the S2HP approach are practically the same as Hashin's lower

bounds and the data from Rosen (1970). When the interface is considered the relative

di�erence between the RVE and the S2HP approaches are around 3% when the rule of

mixutures is applied, and around 0:5% when the modi�ed rule of mixtures is considered.

One possible source of uncertainty on the RVE approach is the e�ective heat 
ux value.
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Interface S2HP RVE Rosen Hashin

��
T

��
T

��
T

��
T (+) ��

T (�)

[W/m-K] [W/m-K] [W/m-K] [W/m-K] [W/m-K]

t/a=0.0 0.7540 0.7442 0.7542 0.8670 0.7540

t/a=0.1 0.7153 0.6938 { { {

t/a=0.02 0.7511 0.7286 { { {

Table 4: ��
T
described by the rule of mixtures

Interface S2HP RVE Rosen Hashin

��
A

��
A

��
A

��
A

[W/m-K] [W/m-K] [W/m-K] [W/m-K]

t/a=0.0 0.7372 0.7372 0.7370 0.7371

t/a=0.1 0.7713 0.7713 { {

t/a=0.02 0.7757 0.7757 { {

Table 5: ��
A
described by the modi�ed rule of mixtures

Interface S2HP RVE Rosen Hashin

��
T

��
T

��
T

��
T (+) ��

T (�)

[W/m-K] [W/m-K] [W/m-K] [W/m-K] [W/m-K]

t/a=0.0 0.7041 0.7010 0.7042 0.8096 0.7041

t/a=0.1 0.7106 0.7075 { { {

t/a=0.02 0.7499 0.7469 { { {

Table 6: ��
T
described by the modi�ed rule of mixtures
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In our case, we compute the heat 
ux on the nodal points at RVE center line, and for

each region (�ber, matrix, and interface) the average heat 
ux is computed. Then, the

e�ective heat 
ux on the center line can be evaluated by adding each regions average

heat 
ux. As the heat 
ux was calculated using a piecewise function its value is only an

approximation. A possible solution is the use of a more re�ned mesh.

One interesting observation when analyzing the new expression (Eqs. 14) is that the

model used to describe the interface property - the thermal conductivity - has direct in-


uence on the calculation of the e�ective transverse thermal conductivity.

6. CLOSING REMARKS

The e�ective thermal conductivity for transversely isotropic recycled polymeric ma-

trix composites are calculated based on the double step homogenization procedure and

the representative volume element approach. For the perfect bonding condition, the dou-

ble step homogenization procedure and the RVE approach give approximately the same

results. When the weak interface �ber/matrix condition, is applied there is an average

di�erence between the two methods of calculation on �T of 0:5% when the modi�ed rule

of mixtures is used to describe the interface's properties, and 3% when the rule of mix-

tures is used as an interface governing equation. It is the author's conclusion that the

modi�ed rule of mixtures describes with more accuracy the interface's properties. The

new equation proposed to describe the e�ective transverse thermal conductivity based

on the analogy between the shear loading and the conductivity seems to be adequate.

However, more work (numerical and experimental) must be done to get a more accurate

interface governing equation and to validate the new expression proposed for the e�ective

transverse thermal conductivity.
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