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Abstract. This paper deals with the sequential estimation procedure for the identification of
thermal conductivity and of volumetric heat capacity of solids. The experimental setup
conceived consists of a heater symmetrically assembled between two pieces of the specimen
with unknown properties. The sequential estimation procedure is described in detail, as
applied to the present nonlinear parameter estimation problem. Transient simulated
temperature measurements taken in the specimen are used in order to verify the accuracy of
this estimation approach.
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1. INTRODUCTION

The accurate knowledge of thermophysical properties is of importance for the correct
prediction of the thermal behavior of bodies. Several experimental techniques have been
developed in the past for the estimation of thermal conductivity and thermal diffusivity, by
using steady-state, as well as transient experiments. Such techniques include, among others,
the guarded hot-plate method (ASTM, C177), the Flash method (Taylor and Maglic, 1984)
and the hot-wire method (Blackwell, 1954). Transient techniques have the advantage of
involving faster experiments than steady-state techniques.

More recently, the use of inverse analysis techniques of parameter estimation have been
used for the identification of thermophysical properties, by utilizing minimization procedures
involving transient measurements (Taktak et al, 1993, Dowding et al, 1995, 1996, Orlande et
al, 1994, 1995, Guimardes et al, 1997, Mgjias et a, 1999, Oliveira et al, 1999). More
specifically, in a previous paper we discussed the design of optimum experiments for the
simultaneous estimation of thermal conductivity and volumetric heat capacity of solids
(Oliveira et a, 1999). Three possible arrangements for the experimental setup, involving a
heater placed between two identical pieces of the specimen with unknown properties, were
examined in such work. The arrangement resulting on smaller confidence regions for the



parameters was that involving a constant temperature boundary condition for the non-heated
surface. The Levenberg-Marquardt method (Beck and Arnold, 1977, Ozisk and Orlande,
2000) was used for the minimization of the least-squares norm. The accuracy of such a
parameter estimation approach was verified by using transient simulated measurements
containing random errors.

The main objectives of this work are to implement and test the Sequential Estimation
Procedure advanced by Beck (1977, 1999) for the identification of thermal conductivity and
volumetric heat capacity, in an experimental setup similar to that designed by Oliveira et a
(1999). Such a sequential procedure uses previously estimated values for the unknown
parameters in order to obtain improved estimates. An anaysis of the values estimated
sequentially permit the identification of improper mathematical models used for the physical
problem under picture. Also, with such an approach it is possible to identify if a sufficient
number of transient measurements and if a sufficiently long experimental time have been used
in the experiment in order to obtain accurate estimates for the unknown parameters.

2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

The physical problem considered here, involving the experimental apparatus to be used
for the simultaneous estimation of thermal conductivity and volumetric heat capacity, consists
of a heater symmetrically placed between two identical pieces of length L, of the solid with
unknown properties. The heater is turned on for a period 0<t<t,. Transient temperature

measurements taken in the solid in the period O<t<t,, where t, <t,, are used for the

estimation of the properties.

In a previous work, we examined the effects of the boundary condition at the non-heated
surface at x =L on the accuracy of the estimated parameters (Oliveira et al, 1999). The use
of a constant temperature boundary condition resulted on the largest values for the
determinant of the Fisher information matrix and, consequently, on the smallest confidence
regions for the estimated parameters. Therefore, in the present work we assume that the non-
heated boundary at x = L iskept at a constant temperature.

By taking into account the symmetry of the experimental apparatus, the mathematical
formulation of the physical problem examined hereis given in dimensionless form as
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In equations (3), kr and cr are reference values for thermal conductivity and volumetric
heat capacity, respectively, pisthe density of the solid, g is the magnitude of the applied heat
flux during the period O0<t<t, and Ty is the constant temperature at the boundary x =L,
which is aso assumed to be theinitial temperature in the region.

Problem (1), with known thermophysical properties, boundary and initial conditions,
constitutes a Direct Heat Conduction Problem. The analytical solution for this direct problem
can be easily obtained via the Classical Integral Transform Technique (Ozisik, 1993) as:
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3. INVERSE PROBLEM

For the Inverse Problem considered here, the thermal conductivity k* and the volumetric
heat capacity c* are regarded as unknown quantities. For the estimation of such properties, we
consider available for the inverse analysis the transient readings Y; taken at timest;, i =1,...,1,
of one temperature sensor located in the solid with unknown properties.

Such type of inverse parameter estimation problem is usualy solved through the
minimization of the least-squares norm, in a whole-domain approach, where al the transient
measurements are used simultaneously in the minimization procedure (Beck and Arnold,
1977, Ozisik and Orlande, 2000). In this paper, we use an aternative approach where the
parameters are estimated by using the transient measurements Y;, for t;, i =1,...,1 , sequentially
in time (Beck and Arnold, 1977, Beck, 1999), as described next.

4. SEQUENTIAL PARAMETER ESTIMATION
The starting point for the Sequential Parameter Estimation Approach advanced by Beck
(1977, 1999) is the minimization of the Maximum a Posteriori objective function. Such

objective function, for the estimation of the vector of unknown parameters P=[k*,c*], is
defined as (Beck and Arnold, 1977):

S(P) =[Y -T(P)"W[Y -T(P)] +(u-P)"V(n-P) (6.3)

where W is aweighting matrix and

[Y -T(P)]"=[Y, - T,(P).Y, - T,(P),...Y, = T,(P) (6.0)
is the vector containing the differences between measured (Y;) and estimated (T)
temperatures.

The use of the maximum a posteriori objective function involves the following statistical
assumptions (Beck and Arnold, 1977):



» Theerrors are additive and normally distributed with a zero mean;
» The statistical parameters describing the errors are known;
* Thereareno errors in the independent variables, such astime;
e P is arandom vector with known mean p and known covariance matrix V. P is
distributed normally and P and V are uncorrelated.
We note that the above hypotheses do not involve any assumptions regarding the errors
being uncorrelated or not, and the covariance matrix of the errors being constant or not.
The minimization of S(P) requires that its gradient be null. Thus,

OS(P) = —2J"W[Y -T]-2V (p-P) =0 ©)

By linearizing the vector of estimated temperatures with a Taylor series expansion around
the estimated parameters at iteration k, that is,

T(P)=T(P*)+J"(P-P) (8)

we can write an iterative procedure for the estimation of the parameters P in the form (Beck
and Arnold, 1977):

P“' =P  +[JTWJI + VI H{ITWIY = T(P)] +V *(n - P*)} 9)

where J isthe sensitivity matrix defined as
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For convenience in the analysis, we write the sensitivity matrix as
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The elements of the sensitivity matrix are denoted as the sensitivity coefficients. They
provide a measure of the sensitivity of the estimated (or measured) temperatures with respect



to changes in the unknown parameters. Clearly, the solution of inverse problems involving
sensitivity coefficients with small magnitudes is extremely difficult, because the choice of
very different values for the unknown parameters would result in basically the same value for
the measured variables. Also, the columns of the sensitivity matrix are required to be linearly
independent in order to have the matrix J'J invertible, that is, the determinant of J'J cannot
be zero or even very small. We note that analytical expressions can be easily obtained for the
sensitivity coefficients, by differentiating equations (4.a,b) with respect to k* and c*.

If we make the additional assumption that the measurement errors are uncorrelated, the
weighting matrix is given by
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where
W, =1/g? fori=1,...,l (11.b)

and g; is the standard deviation of the measurement Y.

For the sequential nonlinear estimation, such as the one under picture in this paper, Beck
and Arnold (1977) recommend that the parameters be initially estimated by using all
measurements simultaneously. Afterwards, the problem is solved once more, this time
sequentialy, by using the parameters estimated simultaneously and its covariance matrix in
the place of L and V, respectively.

In order to apply the sequential estimation approach, the linearization is performed
around P¥, which is taken as

P°=p fork=0 (12)
P*=Pf fork=12,.

where P is the vector with the values estimated sequentially for the parameters at iteration k,
obtained by using al | measurements.

The main steps for the computational algorithm of the sequential estimation approach can
be organized as follows:

Step 1. Initialize the procedure with k =0 and

pP° = 1) (13.9)
c’=v™" (13.b)
D° =V (u-P" (13.0)

Step 2. Compute the estimate for the vector of unknown parameters sequentialy, for
i =1...,1 with

P“'=P“+C™D, (14.9)

where



C, =C,+J/W,J, (14.b)
D, =D, +JJW,[Y, = T,(P")] (14.c)

Step 3. Check convergence with the vaues estimated sequentially with all |
measurements, that is,

[Pt =P < (15.0)
If the criterion given by equation (15.8) is not satisfied, increment k, make
P =P (15.b)
and return to Step 2.

The above computational algorithm is not in a suitable form for computational
implementation. A more convenient form can be obtained by writing the sequential estimation
explicitly, that is, the estimate for the vector of parameters P;“**, obtained with measurements
up to time t a iteration k+1, is obtained directly from the estimate obtained with
measurements up to time't;.; at the same iteration, Pi.,*** , instead of P* asin equation (14.a).

In order to derive such aternative form for the sequential estimation procedure we
rewrite equation (14.a) for the (k+1)™ iteration, with measurements up to time i+1, as:

Pli:l = Pk + [‘]iT+lWi+l‘]i+l + Ci]_l{‘]iT+lWi+1[Yi+l - Ti+l(Pk)] + D|} (16a)
or, aternatively,
[JiT+1Wi+1Ji+1 + Ci][Piﬁl - Pk] = JiT+1Wi+1[Yi+1 - Ti+1(Pk )] + Di (16-b)

By subtracting [JiT+1Wi +19i+1 +Ci]|3,'“rl from both sides of equation (16.b) and after
performing some algebraic manipulations we obtain:

P‘+?Ir.l = Pik + Vi+1‘]iT+1Wi+1{ [Yi+1 - Ti+1(Pk)] - Ji+1[Pik+l - Pk]} (178.)

where
Vig = [JiT+lWi+lJi+l + Ci]_l (17.b)

Vi+1 is the covariance matrix for the linear maximum a posteriori estimator using i+1
measurements, which is used as an approximation for the nonlinear estimator (Beck and
Arnold, 1977).

By using the following matrix identities (Beck and Arnold, 1977):

Via =V, = Vi3V e + W) 7 3LV,

i+l |

T T T -1y -1 (18.ab)
Vi+1‘]i+1Wi+1 = Vi ‘]i+1(‘]i+lvi Ji+1 + Wi+1



where equation (18.9) is referred to as the Matrix Inversion Lemma (Beck and Arnold, 1977,
Beck, 1999), we can write the following computational algorithm for the sequential
estimation approach:
Step 1. Initialize the procedure with k = 0 and
P’=n (19

Step 2. Compute the estimate for the vector of unknown parameters sequentialy, for
i =0,...,1 =1 with

A=V, J], (20.a)
A=J, A+W (20.b)
K=AA™ (20.0)
Ei =Yy — T (PY) (20.d)
R = P KB g - 3 (RE - PY)] (20)
Vi =V -K i,V (20)
where
Vo =V (20.9)
P =n (20.h)

Step 3. Check convergence with the vaues estimated sequentially with all |
measurements, that is,

[Pt =R < (2La)
If the criterion given by equation (21.a) is not satisfied, increment k, make
P =Pf (21.b)
and return to step 2.

A quite important computational feature of the above agorithm is that, if one
measurement is added at a time, such as for the case involving transient measurements of a
single sensor, no matrix inversion is performed because A and Wi., are scalars. In fact, even
if transient measurements of multiple sensors are used in the analysis, they can be arranged so
that one single measurements is added to the sequential estimation at atime, so that no matrix
inversions need to be performed.

The above computational algorithm was derived for a case where previous estimates were
available for the vector of parameters and for their covariance matrix, obtained by using all
measurements simultaneoudly, i.e., not sequentially. However, it can also be used for cases
where no previous estimations are available, or if available, they have large uncertainty. For
such cases, we take p as any vector, say, with null components. Also, we take V as a diagonal



matrix with large values on the diagonal as compared to the square of the expected values for
the parameters.

5. RESULTSAND DISCUSSIONS

We present below the results obtained with the sequential estimation approach described
in this paper, for the estimation of k* and c*, obtained with simulated measurements. Such
simulated measurements were obtained from the solution of the direct problem (1) for
k*=c*=1. The measurements obtained in such manner are considered as exact.
M easurements containing random errors were generated by adding a noise term with normal
distribution, zero mean and constant standard-deviation to these exact values.

For the cases examined here, the sensor was located at X = 0. Such location was the one
resulting on the largest values of the determinant of the Fischer information matrix, and
conseguently, on the smaller confidence intervals for the estimated parameters (Oliveira et a,
1999). Similarly, we used here 7, =2.2 and 7, = 3.0.

Table 1 illustrates the results obtained with the sequential estimation approach, after the
parameters and their covariance matrix have been initially estimated with the Levenberg-
Marquardt method, for different number of transient measurements used in the analysis. We
note that for the cases presented in Table 1, no improvement on the accuracy of the estimated
parameters was obtained by using the sequential approach, after the parameters were initially
estimated with the Levenberg-Marquartd method. This is the case because the parameters
were initially estimated with optimally-designed variables, resulting on minimum variance
estimates. In fact, the parameters estimated sequentially converged immediately to the
parameters estimated with the Levenberg-Marqaurdt method, as shown in Figure 1.

Table 1. Sequentially estimated parameters with a priori information

I Levenberg-Marquardt Sequential Estimation

Estimated Standard Estimated  Standard

Parameter  Deviation | Parameter  Deviation
50 k* 0.999 0.002 0.999 0.002
c* 1.011 0.007 1.011 0.007
100 k* 1.001 0.001 1.001 0.001
c* 1.006 0.005 1.006 0.005
150 k* 1.000 0.001 1.000 0.001
c* 1.006 0.004 1.006 0.004

We now examine a case where no prior information regarding the values for the
parameters and for their covariance matrix was assumed available. In this case, we took
k* =c* =107 astheinitial guesses for the parameters and V,, = V,, =100. Figure 2 shows
the results obtained for the sequentially estimated parameters with different number of
transient measurements. Similarly to the case examined above, optimally designed values
were used for 7, and 7, , and the single sensor was located at X = 0. These figures show that
the parameters converged fast to their exact values during the experimental time used for the
analysis, even with a small number of transient measurements such as 50, when no a priori
information was available regarding their values and variances.
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Figure 2. Sequentially estimated k* and c*with no a priori information

6. CONCLUSIONS

In this paper we described in detail and implemented Beck’'s sequential estimation
procedure of parameter estimation. Test-cases involving the simultaneous estimation of
thermal conductivity and volumetric heat capacity of solids were examined. No improvement
on the accuracy of the estimated parameters was observed when a priori information was
available from experiments optimally designed, but the sequential estimation procedure shows
that the parameters converge to their exact values even with a small number of transient
measurements. Parameters obtained sequentially also converged quite fast when no a priori
information was assumed for the analysis, even when initial guesses very far from the exact

values were used.
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