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Abstract. This paper deals with the sequential estimation procedure for the identification of 
thermal conductivity and of volumetric heat capacity of solids. The experimental setup 
conceived consists of a heater symmetrically assembled between two pieces of the specimen 
with unknown properties. The sequential estimation procedure is described in detail, as 
applied to the present nonlinear parameter estimation problem. Transient simulated 
temperature measurements taken in the specimen are used in order to verify the accuracy of 
this estimation approach.  
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1. INTRODUCTION 
 
 The accurate knowledge of thermophysical properties is of importance for the correct 
prediction of the thermal behavior of bodies. Several experimental techniques have been 
developed in the past for the estimation of thermal conductivity and thermal diffusivity, by 
using steady-state, as well as transient experiments. Such techniques include, among others, 
the guarded hot-plate method (ASTM, C177), the Flash method (Taylor and Maglic, 1984) 
and the hot-wire method (Blackwell, 1954). Transient techniques have the advantage of 
involving faster experiments than steady-state techniques. 
 More recently, the use of inverse analysis techniques of parameter estimation have been 
used for the identification of thermophysical properties, by utilizing minimization procedures 
involving transient measurements (Taktak et al, 1993, Dowding et al, 1995, 1996, Orlande et 
al, 1994, 1995, Guimarães et al, 1997, Mejias et al, 1999, Oliveira et al, 1999). More 
specifically, in a previous paper we discussed the design of optimum experiments for the 
simultaneous estimation of thermal conductivity and volumetric heat capacity of solids 
(Oliveira et al, 1999). Three possible arrangements for the experimental setup, involving a 
heater placed between two identical pieces of the specimen with unknown properties, were 
examined in such work. The arrangement resulting on smaller confidence regions for the 



parameters was that involving a constant temperature boundary condition for the non-heated 
surface. The Levenberg-Marquardt method (Beck and Arnold, 1977, Ozisik and Orlande, 
2000) was used for the minimization of the least-squares norm. The accuracy of such a 
parameter estimation approach was verified by using transient simulated measurements 
containing random errors.  
 The main objectives of this work are to implement and test the Sequential Estimation 
Procedure advanced by Beck (1977, 1999) for the identification of thermal conductivity and 
volumetric heat capacity, in an experimental setup similar to that designed by Oliveira et al 
(1999). Such a sequential procedure uses previously estimated values for the unknown 
parameters in order to obtain improved estimates. An analysis of the values estimated 
sequentially permit the identification of improper mathematical models used for the physical 
problem under picture. Also, with such an approach it is possible to identify if a sufficient 
number of transient measurements and if a sufficiently long experimental time have been used 
in the experiment in order to obtain accurate estimates for the unknown parameters. 
 
2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 
 
 The physical problem considered here, involving the experimental apparatus to be used 
for the simultaneous estimation of thermal conductivity and volumetric heat capacity, consists 
of a heater symmetrically placed between two identical pieces of length L, of the solid with 
unknown properties. The heater is turned on for a period htt0 ≤< . Transient temperature 

measurements taken in the solid in the period ftt0 ≤< , where fh tt ≤ , are used for the 
estimation of the properties.  
 In a previous work, we examined the effects of the boundary condition at the non-heated 
surface at Lx =  on the accuracy of the estimated parameters (Oliveira et al, 1999). The use 
of a constant temperature boundary condition resulted on the largest values for the 
determinant of the Fisher information matrix and, consequently, on the smallest confidence 
regions for the estimated parameters. Therefore, in the present work we assume that the non-
heated boundary at Lx =  is kept at a constant temperature. 
 By taking into account the symmetry of the experimental apparatus, the mathematical 
formulation of the physical problem examined here is given in dimensionless form as 
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and the following dimensionless variables were defined: 
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 In equations (3), kR and cR are reference values for thermal conductivity and volumetric 
heat capacity, respectively, ρ is the density of the solid, q0 is the magnitude of the applied heat 
flux during the period htt0 ≤<  and T0 is the constant temperature at the boundary Lx = , 
which is also assumed to be the initial temperature in the region. 
 Problem (1), with known thermophysical properties, boundary and initial conditions, 
constitutes a Direct Heat Conduction Problem. The analytical solution for this direct problem 
can be easily obtained via the Classical Integral Transform Technique (Ozisik, 1993) as: 
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where: 
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3. INVERSE PROBLEM 
 
 For the Inverse Problem considered here, the thermal conductivity k* and the volumetric 
heat capacity c* are regarded as unknown quantities. For the estimation of such properties, we 
consider available for the inverse analysis the transient readings Yi taken at times ti, ,...,I1i = , 
of one temperature sensor located in the solid with unknown properties.  
 Such type of inverse parameter estimation problem is usually solved through the 
minimization of the least-squares norm, in a whole-domain approach, where all the transient 
measurements are used simultaneously in the minimization procedure (Beck and Arnold, 
1977, Ozisik and Orlande, 2000). In this paper, we use an alternative approach where the 
parameters are estimated by using the transient measurements Yi, for ti, ,...,I1i = , sequentially 
in time (Beck and Arnold, 1977, Beck, 1999), as described next. 
 
4. SEQUENTIAL PARAMETER ESTIMATION 
 
 The starting point for the Sequential Parameter Estimation Approach advanced by Beck 
(1977, 1999) is the minimization of the Maximum a Posteriori objective function. Such 
objective function, for the estimation of the vector of unknown parameters P=[k*,c*], is 
defined as (Beck and Arnold, 1977): 
 
 [ ] [ ] )()()()()(S 1TT PVPPTYWPTYP −−+−−= −  (6.a) 
 
where W is a weighting matrix and  
 
 [ ] [ ])(T...,Y,)(T,Y)(TY)( II2211

T PPPPTY −−−=−  (6.b) 
is the vector containing the differences between measured (Yi) and estimated (Ti) 
temperatures.  
 The use of the maximum a posteriori objective function involves the following statistical 
assumptions (Beck and Arnold, 1977):  



• The errors are additive and normally distributed with a zero mean; 
• The statistical parameters describing the errors are known; 
• There are no errors in the independent variables, such as time; 
• P is a random vector with known mean µ and known covariance matrix V. P is 

distributed normally and P and V are uncorrelated. 
 We note that the above hypotheses do not involve any assumptions regarding the errors 
being uncorrelated or not, and the covariance matrix of the errors being constant or not. 
 The minimization of S(P) requires that its gradient be null. Thus, 
 
 0)(2][2)(S 1T =−−−−=∇ − PVTYWJP  (7) 
 
 By linearizing the vector of estimated temperatures with a Taylor series expansion around 
the estimated parameters at iteration k, that is,  
 
 )()()( kkk PPJPTPT −+=  (8) 
 
we can write an iterative procedure for the estimation of the parameters P in the form (Beck 
and Arnold, 1977): 
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where J is the sensitivity matrix defined as 
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 For convenience in the analysis, we write the sensitivity matrix as 
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 The elements of the sensitivity matrix are denoted as the sensitivity coefficients. They 
provide a measure of the sensitivity of the estimated (or measured) temperatures with respect 



to changes in the unknown parameters. Clearly, the solution of inverse problems involving 
sensitivity coefficients with small magnitudes is extremely difficult, because the choice of 
very different values for the unknown parameters would result in basically the same value for 
the measured variables. Also, the columns of the sensitivity matrix are required to be linearly 
independent in order to have the matrix JTJ invertible, that is, the determinant of JTJ cannot 
be zero or even very small. We note that analytical expressions can be easily obtained for the 
sensitivity coefficients, by differentiating equations (4.a,b) with respect to k* and c*. 
 If we make the additional assumption that the measurement errors are uncorrelated, the 
weighting matrix is given by 
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where 
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and σi is the standard deviation of the measurement Yi. 
 For the sequential nonlinear estimation, such as the one under picture in this paper, Beck 
and Arnold (1977) recommend that the parameters be initially estimated by using all 
measurements simultaneously. Afterwards, the problem is solved once more, this time 
sequentially, by using the parameters estimated simultaneously and its covariance matrix in 
the place of µ and V, respectively.  
 In order to apply the sequential estimation approach, the linearization is performed 
around Pk, which is taken as  
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where PI

k is the vector with the values estimated sequentially for the parameters at iteration k, 
obtained by using all I measurements. 
 The main steps for the computational algorithm of the sequential estimation approach can 
be organized as follows: 
 
 Step 1. Initialize the procedure with 0k =  and  
 
 P =0  (13.a) 
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 Step 2. Compute the estimate for the vector of unknown parameters sequentially, for 

I,...,1i =  with 
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 Step 3. Check convergence with the values estimated sequentially with all I 
measurements, that is, 
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 If the criterion given by equation (15.a) is not satisfied, increment k, make 
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and return to Step 2.  
 
 The above computational algorithm is not in a suitable form for computational 
implementation. A more convenient form can be obtained by writing the sequential estimation 
explicitly, that is, the estimate for the vector of parameters Pi

k+1, obtained with measurements 
up to time ti at iteration k+1, is obtained directly from the estimate obtained with 
measurements up to time ti-1 at the same iteration, Pi-1

k+1 , instead of Pk as in equation (14.a).  
 In order to derive such alternative form for the sequential estimation procedure we 
rewrite equation (14.a) for the (k+1)th iteration, with measurements up to time i+1, as: 
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or, alternatively, 
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performing some algebraic manipulations we obtain: 
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 Vi+1 is the covariance matrix for the linear maximum a posteriori estimator using i+1 
measurements, which is used as an approximation for the nonlinear estimator (Beck and 
Arnold, 1977). 
 By using the following matrix identities (Beck and Arnold, 1977): 
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where equation (18.a) is referred to as the Matrix Inversion Lemma (Beck and Arnold, 1977, 
Beck, 1999), we can write the following computational algorithm for the sequential 
estimation approach: 
 
 Step 1. Initialize the procedure with 0k =  and  
 
 P =0  (19) 
 
 Step 2. Compute the estimate for the vector of unknown parameters sequentially, for 

1I,...,0i −=  with 
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where 
 

 VV =0  (20.g) 
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0  (20.h) 

 
 Step 3. Check convergence with the values estimated sequentially with all I 
measurements, that is, 
 

 ε<−+ k
I

1k
I PP  (21.a) 

 
 If the criterion given by equation (21.a) is not satisfied, increment k, make 
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and return to step 2. 
 
 A quite important computational feature of the above algorithm is that, if one 
measurement is added at a time, such as for the case involving transient measurements of a 
single sensor, no matrix inversion is performed because  and Wi+1 are scalars. In fact, even 
if transient measurements of multiple sensors are used in the analysis, they can be arranged so 
that one single measurements is added to the sequential estimation at a time, so that no matrix 
inversions need to be performed. 
 The above computational algorithm was derived for a case where previous estimates were 
available for the vector of parameters and for their covariance matrix, obtained by using all 
measurements simultaneously, i.e., not sequentially. However, it can also be used for cases 
where no previous estimations are available, or if available, they have large uncertainty. For 
such cases, we take  as any vector, say, with null components. Also, we take V as a diagonal 



matrix with large values on the diagonal as compared to the square of the expected values for 
the parameters. 
 
5. RESULTS AND DISCUSSIONS 
 
 We present below the results obtained with the sequential estimation approach described 
in this paper, for the estimation of k* and c*, obtained with simulated measurements. Such 
simulated measurements were obtained from the solution of the direct problem (1) for 

1*c*k == . The measurements obtained in such manner are considered as exact. 
Measurements containing random errors were generated by adding a noise term with normal 
distribution, zero mean and constant standard-deviation to these exact values. 
 For the cases examined here, the sensor was located at 0X = . Such location was the one 
resulting on the largest values of the determinant of the Fischer information matrix, and 
consequently, on the smaller confidence intervals for the estimated parameters (Oliveira et al, 
1999). Similarly, we used here 2.2h =τ  and 0.3f =τ . 
 Table 1 illustrates the results obtained with the sequential estimation approach, after the 
parameters and their covariance matrix have been initially estimated with the Levenberg-
Marquardt method, for different number of transient measurements used in the analysis. We 
note that for the cases presented in Table 1, no improvement on the accuracy of the estimated 
parameters was obtained by using the sequential approach, after the parameters were initially 
estimated with the Levenberg-Marquartd method. This is the case because the parameters 
were initially estimated with optimally-designed variables, resulting on minimum variance 
estimates. In fact, the parameters estimated sequentially converged immediately to the 
parameters estimated with the Levenberg-Marqaurdt method, as shown in Figure 1. 
 

Table 1. Sequentially estimated parameters with a priori information 
 

I  Levenberg-Marquardt Sequential Estimation 

  
Estimated 
Parameter 

Standard 
Deviation 

Estimated 
Parameter 

Standard 
Deviation 

k* 0.999 0.002 0.999 0.002 
50 

c* 1.011 0.007 1.011 0.007 
k* 1.001 0.001 1.001 0.001 

100 
c* 1.006 0.005 1.006 0.005 
k* 1.000 0.001 1.000 0.001 

150 
c* 1.006 0.004 1.006 0.004 

 
 We now examine a case where no prior information regarding the values for the 
parameters and for their covariance matrix was assumed available. In this case, we took 

1010*c*k −==  as the initial guesses for the parameters and 100VV 2211 == . Figure 2 shows 
the results obtained for the sequentially estimated parameters with different number of 
transient measurements. Similarly to the case examined above, optimally designed values 
were used for hτ  and fτ , and the single sensor was located at 0X = . These figures show that 
the parameters converged fast to their exact values during the experimental time used for the 
analysis, even with a small number of transient measurements such as 50, when no a priori 
information was available regarding their values and variances. 
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Figure 1. Sequentially estimated k* and c* with a priori information 
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Figure 2. Sequentially estimated k* and c*with no a priori information 
 
6. CONCLUSIONS 
 
 In this paper we described in detail and implemented Beck’s sequential estimation 
procedure of parameter estimation. Test-cases involving the simultaneous estimation of 
thermal conductivity and volumetric heat capacity of solids were examined. No improvement 
on the accuracy of the estimated parameters was observed when a priori information was 
available from experiments optimally designed, but the sequential estimation procedure shows 
that the parameters converge to their exact values even with a small number of transient 
measurements. Parameters obtained sequentially also converged quite fast when no a priori 
information was assumed for the analysis, even when initial guesses very far from the exact 
values were used. 
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