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Abstract. Thermo-mechanical coupling is the most common class of coupled problems, in
which the mechanical response of the structure depends on its thermal behaviour and vice-
versa. The ability to solve  these problems successfully is crucially linked to the mechanical
and thermal inter-dependence modelling strategy employed. Particularly for large-scale
problems, a staggered solution approach is generally adopted, in which separate analyses are
undertaken for each phenomenon with data exchange performed at a pre-defined time or
increment intervals. The present work discusses the thermodynamics of a thermoplastic model
in association with a large strain/large displacement elastoplastic model aiming application
at metal forming problems.
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1. INTRODUCTION

Thermo-mechanical coupling is the most common class of coupled problems, in which
the mechanical response of the structure depends on its thermal behaviour and vice-versa. The
ability to solve  these problems successfully is crucially linked to  the mechanical and thermal
inter-dependence modelling strategy employed. Particularly for large problems, a staggered
solution approach is generally adopted, in which separate analyses are undertaken for each
phenomenon with data exchange performed at a pre-defined time or increment intervals.

The independent solution of heat transfer problems is reasonably well established and
does not present any substantial difficulties even if non-linearities are included. Application of
numerical techniques to mechanical problems has  developed rapidly in the last ten years, but
the critical issue of solving practical thermo-mechanical problems still seems to be open,
particularly those involving large strains, large displacements, multi-fracturing materials,
complex friction/contact conditions and other  complexities.   Therefore, aiming application at
such  problems, an efficient and relatively simple thermo-mechanical algorithm using a
staggered solution procedure is implemented, in which large strains and dissipation of plastic
work are accounted for.

2. THERMO-MECHANICAL COUPLING

Conceptually, thermo-mechanical coupling is manifested through mutual inter-
dependence of the mechanical and thermal laws. The thermal laws, represented by the first
(energy conservation) and second (irreversible thermodynamics) principles of
thermodynamics, govern the evolution of the temperature field, thereby affecting the  material
parameters and causing thermal expansion. The mechanical laws, expressed in terms of the
momentum equations, affect the thermal problem through, primarily, the geometry change,
dissipation of plastic and frictional work and thermal contact.  In the present work, emphasis
is given to modelling the thermal effect of the inelastic deformation.

2.1 Thermal effect of the inelastic deformation

Application of the first and second principles  of thermodynamics to a body undergoing
inelastic deformation leads to

0][div =+−− kqrqc i ρθρ �                                                                                          (1)

where kq  is the Fourier law of conductivity,  θ∇−= kqk , r is a heat source other than that

caused by any mechanical effect, θ�  is the temperature rate, ρ , c and k are the specific mass,

specific heat and thermal conductivity tensor respectively and iq  represents the inelastic

coupling term, which accounts for the thermal effect of the inelastic deformation. It is
interesting to note iq  can assume different forms according to the thermoplastic model

adopted (Argyris & Doltsinis, 1981; Perzyna, 1993).

3. LARGE DEFORMATION ELASTOPLASTICITY

The mechanical solution of large strain/large deformation elastoplastic problems requires
complex mathematical and numerical tools to account for geometrical nonlinearities. The
classical approach to small strain problems uses the so-called additive decomposition of the
strain tensor, pe += , into elastic, e , and plastic, p , components. On the other hand, its



use in large deformation problems leads to other difficult problems, such as definition of
robust objective stress rate tensors, which still is a matter of intense discussion. In recent
years, an approach based on multiplicative decomposition of the deformation gradient tensor
(Lee, 1969), F , has been proposed as

pe FFF =                                                                                                                        (2)

in which eF  and pF  represent the elastic and plastic components of the deformation
gradient. Furthermore, the velocity gradient, 1−≡ FFL � , is defined from equation (2), which

can also be decomposed into elastic and plastic components, pe LLL += , where eee −= FFL �

and eppep FFFFL −−= � . Similarly, the rate of deformation (or plastic stretching) tensor,
][sym LD≡ , is decomposed into elastic and plastic as

pe DDD +=                                                                                                                     (3)

in which ][sym ee LD =  and ][sym pp LD = . Therefore, the plastic contribution to the rate of
deformation on the intermediate configuration is given by

][sym pp LD =                                                                                                                    (4)

where pL  is the plastic contribution to the velocity gradient, ppFFL −= �p . The present finite
element formulation uses the spatial configuration to formulate the constitutive equations
thereby requiring definition of  the rotation of  pD  as

TeeTepep RFFRRDRD pp ][sym
~ −== �                                                                          (5)

in which pD
~

 is the modified plastic stretching, eR is the elastic rotation, resulting from the
polar decomposition of eF , eeeee RVURF == , where  eU and  eV denote the right and left
stretch tensors respectively. Further considerations on the formulation summarised above can
be found in De Souza Neto at al. (1998).

4. THERMOPLASTIC MODEL

Thermoplastic models can be derived from the thermodynamic analysis of deforming
bodies in conjunction with phenomenological observations. There exists at least three general
presentations, i.e., the classical theory of irreversible processes, the so-called rational
thermodynamics and the thermodynamics with internal variables. The thermodynamic
characteristics of a model, such as thermodynamic equilibrium, description of thermodynamic
state and axioms, in conjunction with phenomenological considerations define individual
thermoplastic formulations. The reader is referred to the following papers for further
considerations on the existing thermoplastic models: Rebelo & Kobayashi (1980), Argyris &
Doltsinis (1981, Simo & Miehe (1992), Perzyna (1993) and Casey (1998).

The following sections present a brief review of some basic principles and definitions and
a discussion on the thermodynamics of plastic deformations under the framework of  large
deformation elastoplasticity using multiplicative decomposition of the deformation gradient
tensor.



4.1 Basic principles and definitions

The derivation of an equation able to describe the temperature evolution involves the first
and second principles of thermodynamics, Clausius-Duhem inequality, and definition of
internal variables and thermodynamic potentials.

The first principle of thermodynamics expresses the conservation of energy, which
applied to a continuous deformable body, can be written as

re k ρρ +−= ][div: qD�                                                                                                 (6)

where e�  is the internal energy rate.
The Clausius-Duhem Inequality is a landmark in the development of any thermoplastic

model and represents a restraint to a so-called admissible thermodynamic process. The
derivation of the inequality is based on the first and second principles of thermodynamics as
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where ψ  is the specific free energy, also known as Helmholtz specific free energy, which is a
thermodynamic potential associated to the internal energy and is defined by

ηθψ −=e                                                                                                                          (8)

in which
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4.2 The temperature evolution equation

A general thermoplastic formulation, represented by the thermal evolution equation, is
derived from the definition of the total dissipation, φ , which in turn, is derived from the
Clausius-Duhem Inequality and the first principle of thermodynamics. Furthermore, due to the
large plastic deformation, the Cauchy stresses, , are not suitable thereby requiring use of a
different approach. Therefore, the Kirchoff stress tensor, , is used in the present finite
element model as

ρ
ρ0=                                                                                                                         (10)

where 0ρ  is the specific mass at original configuration and ρ  is the current specific mass.

Therefore, the conservation of energy equation (6) can be rewritten as

re k ρ
ρ
ρρ +−= ][div:

0

qD�                                                                                         (11)



The total dissipation can be defined from the Clausius-Duhem Inequality in conjunction
with equation (10) as
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The total dissipation can be split into intrinsic, intrφ , and thermal, therφ , components, as

shown in equation (12). The former is due to the inelastic deformation of the system and the
latter to heat transfer effects. Additionally, the rate of the Helmholtz specific free energy, ψ� ,
is obtained from equation (8) as
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Thus, the intrinsic dissipation is defined from equations (12) and (13) as

D:eintr +−= �� 00 ρηθρφ                                                                                              (14)

By combining the energy equation (11) and (14), one obtains

0]div[ 00
0 =−−+ intrr φρηθρ
ρ
ρ

�kq                                                                                  (15)

which represents the temperature evolution equation. However, the specific entropy rate, η� ,

and the intrinsic dissipation, intrφ , still have to be determined.

Firstly, the specific entropy rate, η� , can be determined by using the definitions associated

to the specific free energy (9)a and by assuming that ),,( θψψ e= , where e  is the elastic
strain tensor and is a set of internal variables1. Thus
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so that

e∂
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where c  is the specific heat and A  is the thermodynamical force conjugate to the internal
variables .

                                                          
1 The internal variables, collectively denoted by , are assumed to describe, macroscopically or microscopically, the
internal structure of the material  and can be expressed in terms of scalar, vector, tensor or  n-vector. Furthermore, an
evolution law, frequently represented in rate form, is associated with the problem (See  Maugin, 1992; Lubliner, 1990;
Perzyna, 1993, and references therein).



The first step to obtain an expression for the intrinsic dissipation, intrφ , is to derive the

specific free energy, ),,( θψψ e= , with respect to time as
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in which the derivative terms of the right hand side of equation (18) can be easily identified
with the definitions of the Kirchoff stress tensor, , thermodynamical forces conjugate to
internal variables, A , and entropy, ηρ0 . It is also possible to show that, for large strain

elastoplasticity (De Souza Neto, 1998),
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where pD
~

is the modified plastic stretching, which corresponds to a measure of rate of plastic
deformation at large plastic strains. Therefore, the substitution of (19) into (18) yields
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The intrinsic dissipation can be finally obtained by combining its definition from
equation (12) and  equation (20) as
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Finally, a general temperature evolution equation is obtained by substituting equations
(16) for the specific entropy rate and equation (21), for the intrinsic dissipation into equation
(15) so that
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The formulation based on internal variables can be applied to different materials and
problems by selecting them accordingly. The  complexities which arise in this formulation are
due not only to a proper choice of internal variables, but also to the correct and consistent
formulation of the dependency of these variables on the other parameters involved.
Furthermore, the dependency of the stress tensor on the temperature, also known as the
thermoelasticity, requires  a proper modelling.

Aiming application at metal forming problems, a simple thermoplastic approach is
adopted, which assumes that the temperature effects on stresses and rate of internal variables
are negligible when compared to the dissipation of the plastic work. Therefore, equation (22)
is reduced to
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in which ξ  is the dissipation factor, which estimates the fraction of the inelastic energy
effectively transformed into heat and ranges from 0 to 1 (Taylor & Quinney, 1933).  It is
worth noting that this approach is valid for problems where the level of plastic deformation is
much greater then the level of the elastic components of the elastic strain tensor, as in metal
forming problems. Similar assumptions were adopted by Sekhon & Chenot (1993), Miles et
al. (1995), Owen at al. (1995) and Vaz Jr. & Owen (1997) under the framework of small
strain elastoplasticity.

5. NUMERICAL EXAMPLE

The numerical example presented in this section aims to assess the model described
previously by comparing nodal temperatures computed during the upset of a cylindrical billet.
The simulation of the upsetting of a cylinder using elasto-plastic materials, although
apparently simple, requires high-level numerical tools, such as large-strain algorithms and
element architecture capable of hourglass control.

One of the first numerical studies of thermo-mechanical analysis using the upsetting
problem was reported by Rebelo & Kobayashi (1980). Since then, Rebelo and Kobayashi’s
test case has become one of the most common benchmark when assessing thermo-mechanical
coupled problems. A very diligent analysis was presented by Tugcu (1996) who evaluate
effects of the thermal softening and strain rate using an elasto-viscoplastic material model and
hypoelastic formulation. Further studies aiming at application to hot and cold forging, using
the upsetting example, were presented by César de Sá et al. (1996) and Pantuso & Bathe
(1997). The former adopted a rigid-viscoplastic material model in conjunction with a mixed
finite element formulation, whereas the latter emphasised aspects of  mechanical and thermal
contact. This brief review shows the relevance of the problem adopted to assess the present
thermo-mechanical model.

5.1 Problem description

The geometry of the problem and the finite element mesh are depicted in Figure 1. Due to
symmetry,  only one quarter of the billet and half of the upper die are modelled. Table 1
summarises the data for carbon steel AISI 1015 and other parameters used in the simulation.
In order to reduce the effects of other phenomena, a high frictional coefficient is assumed,
which virtually eliminates any relative movement between the dies and the workpiece. The
mechanical solution is obtained using finite elements in conjunction with an implicit time
integration scheme, associated with an elasto-plastic material model based on the
multiplicative decomposition of the deformation gradient tensor. The temperature distribution
is determined using an adiabatic heating approach.

The upsetting is achieved by applying 5 mm (1/3 compression of the original cylinder
height) downward rigid surface movement to the upper die. In order to simulate a mechanical
press, the compression speed (relative velocity between dies, v ) decreases towards the end of
the operation as

20)(12)( −= tHtv                                                                        (24)

where )(tH is the total billet height (Rebelo & Kobayashi, 1980).



Figure 1. Geometry of the problem and Finite Element Mesh.

Table 1. Material properties and other simulation parameters.

Description Symbol Value
Specific mass ρ 7800 kg/m3

Specific heat c 483.3 J/kg K
Thermal conductivity k 36.0 J/m K
Friction coefficient µ 0.6
Young’s Modulus E 200 GPa
Poisson’s ratio ν 0.3
Yield stress

Yσ 0.2620.02512)(722 +pε  MPa

Dissipation factor ξ 0.75
Coupling interval
        Explicit
        Implicit
        Present work

t∆
-
-

0.01  s
every solution increment
every solution increment

5.2 Simulation results

In metal forming processes, dissipation of the inelastic work generates thermal energy,
which in turn, causes an increase of the workpice temperature. In addition, the adiabatic
approach assumes that the heat generated remain localised, whose approximation can be
safely adopted in problems of low thermal difusibility or processes of short duration.

Validation of the model is performed by comparing nodal implicit and explicit solutions
provided by a general purpose finite element code (Elfen,1996) for a point at the centre of the
billet, as presented in Table 2. It has been found that, in general, the divergences from Elfen’s
solutions increase with increasing compression.  The differences with the implicit module
increases from 0.12 %, at the first load increment, to 0.64 %, at the end of the compression
process. As expected, the discrepancies presented by the explicit module are greater,
increasing from 0.12 % to 2.41 % towards the end of the process. The divergence between the
implicit and explicit solutions is caused by the integration strategy of the mechanical problem.
The former requires a converged solution at every load increment whereas the latter is



approximated by an explicit time integration scheme thereby avoiding an iterative procedure,
but requiring much smaller time steps.

Table 2. Temperature distribution at the cylinder centre at t = 0.5 s.

Temperature [K]
Compression [mm] Time [s] Explicit

(Elfen, 1996)
Implicit

(Elfen, 1996)
Present work

0.00000 0.000 292.00 292.00 292.00
0.46310 0.025 295.59 295.28 295.23
0.90370 0.050 299.79 299.15 299.08
1.71735 0.100 309.19 307.92 307.78
2.44105 0.150 319.22 317.82 317.56
3.07475 0.200 329.26 328.49 328.00
3.61840 0.250 338.74 339.40 338.57
4.07210 0.300 347.19 349.86 348.64
4.43580 0.350 354.39 359.19 357.56
4.70945 0.400 360.13 366.79 364.79
4.89315 0.450 364.14 372.15 369.89
5.00000 0.500 366.53 375.37 372.94

Figure 2. Temperature distribution at t = 0.5 s.

Figure 2 shows the temperature distribution in the workpiece at t = 0.5 s. The highest
temperatures are found near the centre of the workpiece, which are caused by the high plastic
deformation at this region. It worth noting that the high friction coefficient assumed in the
simulations causes a very small relative displacement between the dies and the workpiece
faces, which virtually eliminates the heat generation due to the dissipation of frictional work.

6. FINAL REMARKS

This paper presents a general thermoplastic model aiming application at metal forming
processes. The general model is derived from the first and second principles of
thermodynamics in conjunction with the Clausius-Duhem inequality and based on internal



variables. The mathematical formulation accounts for large strains/large deformation based on
the multiplicative decomposition of the gradient velocity tensor. The validation of the model
is performed by comparing the temperature distribution with solutions provided by a general
purpose finite element code. Due to the implicit nature of the present solution, the divergences
with Elfen’s  implicit module were significantly smaller than its explicit counterpart.
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