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Abstract. Heated laminar jet flow is numerically investigated using the multigrid method.
Numerical analysis is based on the finite volume discretization scheme applied to structure
orthogonal regular meshes. Performance of the correction storage (CS) multigrid is
compared for different Reynolds number at inlet and distinct number of grids. Up to three
grids were used for both V- and W-cycles. Simultaneous and segregated temperature-velocity
solution schemes were investigated. Advantages in using more than one grid are discussed.
For simultaneous solution, results indicate an increase in the computational effort for higher
inlet Reynolds numbers. Optimal number of intermediate relaxation sweeps within both V-
and W-cycles are discussed.
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1.    INTRODUCTION

Convergence rates in most single-grid solutions are greatest in the beginning of the
iterative process but slow down as the procedure goes on. Effects like those get more
pronounced, as the grid becomes finer. Large grid sizes, however, are often needed when
resolving small recirculating regions or detecting high heat transfer spots. The reason for this
behavior is that iterative methods can efficiently smooth out only those Fourier error
components of wavelengths smaller than or comparable to the grid size. In contrast, multigrid
methods aim to cover a broader range of wavelengths through relaxation on more than one
grid.

The number of iterations and convergence criterion in each step along consecutive grid
levels visited by the algorithm determines the cycling strategy, usually a V- or W-cycle.
Within each cycle, the intermediate solution is relaxed before (pre-) and after (post-
smoothing) the transportation of values to coarser (restriction) or to finer (prolongation) grids
(Brandt, 1977, Stüben & Trottenberg, 1982, Hackbusch, 1985).

Accordingly, multigrid methods can be roughly classified into two major categories. In
the CS formulation, algebraic equations are solved for the corrections of the variables
whereas, in the full approximation storage (FAS) scheme, the variables themselves are
handled in all grid levels. It has been pointed out in the literature that the application of the CS



formulation is recommended for the solution of linear problems being the FAS formulation
more suitable to non-linear cases (Brandt, 1977, Stüben & Trottenberg, 1982, Hackbusch,
1985). An exception to this rule seems to be the work of Jiang, et al, 1991, who reported
predictions for the Navier-Stokes equations successfully applying the multigrid CS
formulation. In the literature, however, not too many attempts in solving non-linear problems
with multigrid linear operators are found.

Acknowledging the advantages of using multiple grids, Rabi & de Lemos, 1998a,
presented numerical computations applying this technique to recirculating flows in several
geometries of engineering interest. There, the correction storage (CS) formulation was applied
to non-linear problems. Later, Rabi & de Lemos, 1998b, analyzed the effect of Peclet number
and the use of different solution cycles when solving the temperature field within flows with a
given velocity distribution. In all those cases, the advantages in using more than one grid in
iterative solution were confirmed. Subsequently, de Lemos & Mesquita, 1999, introduced the
solution of the energy equation in their multigrid algorithm for the flow field. Temperature
distribution was calculated solving the whole equation set together with the flow field as well
as segregating the momentum and energy equations. A study on optimal relaxation parameters
was there reported. Next, Mesquita & de Lemos, 1999, considered non-isothermal laminar
flow past a back-step in a parallel plate channel. In that paper, an in dept analysis on optimal
multigrid cycle parameters was conducted. Recently, de Lemos & Mesquita, 2000 and
Mesquita & de Lemos, 2000, considered the cases of flow in a heated thank and after an
abrupt expansion, respectively. All of these papers are based on the development done by
Mesquita, 2000.

The present contribution extends the early work on CS multigrid methods to the solution
of the energy equation in laminar jet flows. More specifically, heated steady-state flows in
confined jets are now calculated with up to three grids. A schematic of such configuration is
show in Fig. 1.

2.    ANALYSIS

2.1 Governing Equations and Numerics

The continuity, Navier-Stokes and energy equations describe fluid flow and heat transfer.
They express mass, momentum and energy conservation principles respectively and, for a
steady state condition in a two-dimension Cartesian coordinate frame, they are written in
compact notation as:

Figure 1 - Geometries and boundary conditions for confined jet.
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Sφ , ρ is the fluid density, U and V are

the x and y velocity components, respectively, T is the temperature, µ is the dynamic viscosity
and Pr is the Prandtl number. In addition, in this work all fluid properties are held constant.

The solution domain is divided into a number of rectangular control volumes (CV),
resulting in a structured orthogonal non-uniform mesh. Grid points are located according to a
cell-centered scheme and velocities are stored in a collocated arrangement (Patankar, 1980).
Integrating equation (1) over the CV of Figure 2, one gets,
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Integration of the three terms in (2), namely: convection, diffusion and source, leads to a
set of algebraic equations. These practices are described elsewhere (e.g. Patankar, 1980) and
for this reason they are not repeated here. In summary, convective terms are discretized using
the upwind differencing scheme, diffusive fluxes make use of the central differencing scheme
and pressures, needed at cell faces, are approximated by a linear interpolation of neighboring
point values.

Substitution of all approximate expressions for interface values and gradients into the
integrated transport equation (2), gives the final discretization equation for grid node P,

baaaaa SSNNWWEEPP ++++= φφφφφ  (3)

with the east face coefficient, for example, being defined as

eE     ,0]max[   DCa e +−= (4)

In Eq. (4) ee xyD e ∆= δµ  and yUC e δρ )(e = are the diffusive and convective fluxes at the
CV east face, respectively, and, as usual, the operator max[a,b] returns the greater of a and b.

2.2 Multigrid Technique

Assembling Eq. (3) for each control volume of Fig. 2 in the domain of Fig. 1 defines a
linear algebraic equation system of the form,

kkk bTA = (5)

where Ak is the matrix of coefficients, Tk is the vector of unknowns and bk is the vector
accommodating source and extra terms. Subscript “k” refers to the grid level, with k=1
corresponding to the coarsest grid and k=M to the finest mesh.

As mentioned, multigrid is here implemented in a correction storage formulation (CS) in
which one seeks coarse grid approximations for the correction defined as *

kkk TT −=δ where
*

kT  is an intermediate value resulting from a small number of iterations applied to (5). For a



linear problem, one shows that δk is the solution of (Brandt, 1977, Stüben & Trottenberg,
1982, Hackbusch, 1985),

kkk rA =δ (6)

where the residue is defined as
*

kkkk TAbr −= (7)

Eq. (10) can be approximated by means of a coarse-grid equation,

1k1k1k −−− = rA δ (8)

with the restriction operator 1k
k
−I  used to obtain

k
1k
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The residue restriction is accomplished by summing up the residues corresponding to the
four fine grid control volumes that compose the coarse grid cell. Thus, equation (9) can be
rewritten as,
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Diffusive and convection coefficients in matrix Ak need also to be evaluated when
changing grid level. Diffusive terms are recalculated since they depend upon neighbor grid
node distances whereas coarse grid mass fluxes (convective terms) are simply added up at
control volume faces. This operation is commonly found in the literature (Peric, et al, 1989,
Hortmann et al, 1990).

Once the coarse grid approximation for the correction 1k−δ  has been calculated, the
prolongation operator k

1k−I  takes it back to the fine grid as

1k
k

1kk −−= δδ I (11)

In order to update the intermediate value

Figure 2 - Control volume for discretization.



Figure 3 - Sequence of operations in a 4-grid iteration: (a) V-cycle; (b) W-cycle.

k
*

kk δ+= TT (12)

Fig. 3 illustrates a 4-grid iteration scheme for both the V- and W-cycles where the
different operations are: s=smoothing, r=restriction, cg=coarsest grid iteration and
p=prolongation. Also, the number of domain sweeps before and after grid change is denoted
by νpre and νpost, respectively. In addition, at the coarsest k level (k=1), the grid is swept νcg

times by the error smoothing operator.

3. RESULTS AND DISCUSSION

3.1  Computational Details

The computer code developed was run on an IBM PC machine with a Pentium 166 MHz
processor. Grid independence studies were conducted such that the solutions presented herein
are essentially grid independent. For both V- and W-cycles, pre- and post-smoothing iterations
were accomplished via the Gauss-Seidel algorithm whereas, at the coarsest-grid, the TDMA
method has been applied (Patankar, 1980). Also, all flows in the geometry of Fig. 1 were run
with a finest grid of 160x34 nodes.

Results below are focused on the behavior of the energy equation subjected to multigrid
numerical methods. Analysis of velocity and pressure convergence characteristics have
already been reported (Rabi & de Lemos, 1998a, Rabi & de Lemos, 1998b) and for that they
are here not discussed.

3.2 Temperature field

Fig. 4 shows nondimensional temperature distribution patterns for flow in the confined jet
flow of Fig. 1. All walls are kept at the same temperature, higher than the incoming flow
temperature. The figure indicates the effect of increasing the inlet Reynolds number,
Rein=ρUinLin/µ, where the subscript "in" refers to inlet values. Cold fluid penetrates deeper
into the flow core as the inlet Reynolds number increases. These and other results fully
discussed in Mesquita, 2000, assured the accuracy and correctness of the computer code
developed.



3.3  Residues

Residues for the energy equation is defined as,
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where subscript ij identifies a given control volume on the finest grid and nb refers to its
neighboring control volumes.

Fig. 5 is taken from de Lemos & Mesquita, 2000, and is included here for the same of
completeness. It shows residue history for backward facing step case following the two cycles
picture on Fig. 3, namely the V- and W- cycles. The solution follows a simultaneous approach
in the sense that the temperature is always relaxed after the flow field, within the multigrid
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Figure 4- Effect of inRe on temperature pattern for confined jet of Figure 1. From top
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cycle. One can readily notice that for lower Rein, regardless of the number of grids used, faster
solutions are obtained. In this case, relative importance of diffusion terms favors the stability
of the system of equations. Increasing the number of grids for the same Reynolds number is
also advantageous (see Fig. 5). This feature is what makes multigrid methods attractive,
justifying their growing usage. Also interesting to note is that for the V-cycle and for Rein=400
(Fig. 5a), the computational effort related to value transfer among too many grids became
relevant. Using a W-cycle (Fig. 5b) for this Reynolds seems to bring more savings to the
iterative simultaneous solution procedure. Although correspondent results for jets are not
shown here, similar conclusion can be drawn for the geometry of Fig. 1.

Recognizing that the situation here investigated embraces physical uncoupling between
momentum and heat transfer, i.e., heated transfer depends on flow, not the other way around,
a segregated algorithm has been devised. In this case, the flow field is obtained first by
solving the momentum and continuity equations. Then the velocities were recorded.
Subsequently, the multigrid method was again applied to the energy equation only, having the
convection strength calculated with the stored flow field (i.e segregated solution). The other
approach was to relax both momentum and energy equation within the same multigrid
algorithm and was named the simultaneous solution.

A word of caution about the jargon here employed is timely. In the literature, coupled
and uncoupled problems usually refer to the non-linearity among the variable involved.
Simultaneous solutions are those in which all variables are solved together, so that the non-
linearity due to the coupling among variables poses no difficulty. In segregated solutions,
each variable is solved at a time while holding the others still. In this work, simultaneous and
segregated solutions are those in which velocity and temperature are solved either within the
same computer run or in separate calculations, respectively.

Fig. 6 presents residue history for the energy equation for the two situations considered,
namely the simultaneous multigrid solutions for velocity and temperature and the sole
solution of the energy equation, given the flow field (segregated approach). As expected, the
number of iterations needed in the segregated solutions case is lower. Consequently, the
advantages in using multiple grids is felt stronger in simultaneous solutions where overall
computing time are greater. Also interesting to note is that for the jet flow, the advantages in
following a segregated approach are not as evident as in the case of other flows. In de Lemos
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Figure 6 - Residue history for segregated and simultaneous solutions for confined jet.



& Mesquita, 2000 and de Lemos & Mesquita, 1999, much greater savings were obtained
when the segregated scheme was applied to flows in an abrupt expansion and in a heated tank.

3.4 Optimal relaxation parameters

In a series of papers (de Lemos & Mesquita, 1999, Mesquita & de Lemos, 1999, de
Lemos & Mesquita, 2000Mesquita & de Lemos, 2000), a study was carried out to investigate
optimal values for the parameters νpre, νpost and νcg in several flows of engineering interest.
Since the intermediate solutions, before and after grid changes, are not fully solved but are
rather relaxed νpre and νpost times, a question about their optimal values for increasing overall
algorithm performance arises. As restriction and prolongation operations introduce
imprecision to values being transferred, one should expect that the computational effort is
sensitive to the number of smoothing sweeps. In other words, once the intermediate numerical
solution has been relaxed a number of times, removing errors introduced by the transfer
operators and further reducing the residue, it is of no use to keep iterating at a certain grid
level. The results shown below extend such analysis for jet flows.

For a fixed number of sweeps at the coarse grid (νcg), Figure 7 reproduces the necessary
time to convergence when the number of pre- and post-smoothing iterations was allowed to
vary, keeping the same value for νpre=νpost. For comparisons, correspondent calculations for
flow past a back step are also shown in the figure (de Lemos & Mesquita, 2000). One can
clearly detect optimal values for those relaxation parameters. Additional sweeps past those
values consume extra computing time. On the other hand, too few pre- and post-relaxation
passes will demand also a higher computational effort.

In Fig. 8 the number of pre- and post-smoothing iterations was fixed νpre=νpost=1 for jet
confined, whereas the number of coarsest-grid sweeps νcg was free to vary. Here also
additional calculations already presented in Mesquita & de Lemos, 1999, are plotted in Fig.
8b for comparison. Fig. 8a clearly shows optimal values for the confined jet case and a
slightly better performance of the V-cycle, for both Reynolds analyzed and for νcg greater than
4. On the other hand, results in Fig. 8b are quite spread and no optimal value seems to be
detected. This figure clearly shows that no general rule or definite conclusion can be drawn as
far as obtaining an optimal value to be used in all flows. Ultimately, both Figs. 7 and 8
suggest a delicate balance between all parameters involved when minimum CPU consumption
is sought.
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4.0 CONCLUSIONS

In all cases investigated, the used of more than one grid for relaxing the solution was
advantageous for reducing the overall computing time. The W-cycle applied with four grids
was more efficient than the V-cycle (Fig. 5). In the W strategy, more time per cycle is spent in
coarse grids (Fig. 3) causing low frequency error to be more efficiently swept out. For the jet
flow, the use of a segregate approach for solving uncoupled problems did not bring as much
computational savings as it did for other types of flows (Fig. 6).

As far as optimal values, this paper has suggested that at the coarsest grid level, the
solution should be relaxed no more than 1 to 2 times per cycle. Intermediate relaxation should
also be limited to 10 times at the most (Fig. 8). However, optimal parameters can not be
generalized or easily determined a priori and adaptive strategies have been proposed in the
literature.

Accordingly, the ratio of residues after two successive sweeps can be monitored and used
as a criterion for switching grids. Hortmann et al, 1990, points out that this practice is
preferred for single equation systems but, when solving the full equation set as done here,
such practice is not easy to implement. In this case, most works in the literature specify a
fixed number of sweeps, as in the cases here reported (Sathyamurthy & Patankar, 1994,
Hutchinson et al 1988).
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