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Abstract. In this study, a two-dimensional (2-D) heat transfer analysis was performed in 
circular and elliptic tubes heat exchangers. The numerical results for the equilateral triangle 
staggering configuration, obtained with the finite element method were then validated 
qualitatively by means of direct comparison to previously published experimental results for 
circular tubes heat exchangers (Stanescu et al., 1996). Next, a numerical geometric 
optimization was conducted to maximize the total heat transfer rate between the given volume 
and the given external flow both for circular and elliptic arrangements, for general 
staggering configurations. The results are reported for air in the laminar regime, in the 
range 800Re300 L ≤≤ , where L is the swept length of the fixed volume. Circular and 
elliptical arrangements with the same flow obstruction cross sectional area were compared 
on the basis of maximum total heat transfer. The effect of ellipses eccentricity was also 
investigated. A relative heat transfer gain of up to 13 % is observed in the optimal elliptical 
arrangement, as compared to the optimal circular one. The heat transfer gain, combined with 
the relative pressure drop reduction of up to 25 % observed in previous studies (Brauer, 
1964; Bordalo and Saboya, 1995) show the elliptical arrangement has the potential for a 
considerably better overall performance than the traditional circular one. 
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1. INTRODUCTION 
 
 Economic and environmental considerations have brought the need for performance 
improvement on all engineering applications, aiming to rationalize the use of available energy 
and reduction of lost work. Many industrial applications require the use of tubes heat 
exchangers, that have to be sized according to space availability. Therefore, the volume to be 
occupied by the array of tubes is fixed. The volume constrained optimization problem 
consists on finding the optimal spacing between tubes (or cylinders), of a known geometry, 
such that maximum overall heat transfer (or thermal conductance) between the array and the 
surrounding fluid is achieved. A typical application of such fundamental optimization results 
is on the development of cooling techniques for electronic packages. Considerable effort has 
been put on finding optimal spacings for many different types of geometries, both for natural 
and forced convection (Bar-Cohen and Rohsenow, 1984; Kim et al., 1991; Knight et al., 



1991; Anand et al., 1992; Knight et al., 1992; Bejan and Sciubba, 1992; Bejan and Morega, 
1993; Bejan, 1995; Bejan et al., 1995; Stanescu et al., 1996; Ledezma et al., 1996; Fowler et 
al., 1997). 
 Stanescu et al. (1996) reported the optimal spacing of circular cylinders in free-stream 
cross-flow forced convection, which followed the study presented by Bejan et al. (1995) on 
the optimization of arrays of circular cylinders in natural convection. Both studies considered 
only equilateral triangle staggering configurations. The tube geometry was not investigated in 
those studies as an additional degree of freedom. The elliptic tube geometry is expected to 
perform better, aerodynamically, than the circular one, i.e., combining reduction in total drag 
force and increase in total heat transfer, as it was reported by Rocha et al. (1997), when 
comparing elliptic and circular sections in the specific cases of one and two-row tubes and 
plate fin heat exchangers. The results showed a heat transfer gain of up to 18 % when 
comparing elliptic to circular arrangements in the studied cases. 
 The present study focuses on the geometric optimization (optimal spacing) of 
staggered circular and elliptic tubes in a fixed volume. The problem is treated in a 
fundamental (geometric) sense, without specific reference to an application (electronics 
cooling, compact heat exchangers, etc). The optimizations are conducted numerically, by 
using the finite element method to solve the conservation equations (mass, momentum and 
energy), to obtain the velocity and temperature fields inside the arrays, thereafter computing 
the overall heat transfer rate between the tubes and the fluid. First, the numerical results 
obtained with the finite element code are validated by direct comparison to previously 
published experimental results for circular tubes heat exchangers with equilateral triangle 
staggering configurations (Stanescu et al., 1996). Next, the equilateral triangle staggering 
configuration is relaxed and numerical optimization results are obtained for circular and 
elliptic arrangements, for general staggering configurations. Circular and elliptical 
arrangements with the same flow obstruction cross sectional area are then compared on the 
basis of maximum total heat transfer. Appropriate nondimensional groups are defined and the 
optimization results reported in dimensionless charts. 
 
2. THEORY 
 
 Figure 1 is a general simple sketch of the problem configuration. It was shown by 
Fowler and Bejan (1994) that in the laminar regime, the flow through a large bank of 
cylinders can be simulated accurately by calculating the flow through a single channel, such 
as that illustrated by the unit cell seen in Fig. 1. Because of the geometric symmetries, there is 
no fluid exchange and no heat transfer between adjacent channels. In Figure 1, L and H are 
the length and height of the array, and not shown is the width of the array (tube length), W. 
 The governing equations are the mass, momentum and energy equations which were 
simplified in accordance with the assumptions of two-dimensional incompressible steady-
state flow with constant properties, for a Newtonian fluid: 
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where dimensionless variables have been defined as follows: 
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where (x, y) – Cartesian coordinates, m; p – pressure, 2m/N ; ρ - fluid density, 3m/kg ; ∞U  - 

free stream velocity, m/s; (u, v) – fluid velocities, m/s; T – fluid temperature, K; ∞T  - free 

stream temperature, K; wT  - tubes surface temperature, K; L – length of the array in the flow 

direction, m; ν - fluid kinematic viscosity, s/m2  and α - fluid thermal diffusivity, s/m2 . 
 To complete the problem formulation, the following boundary conditions are specified 
for the unit cell of Fig. 1: 
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 Once the geometry of the computation domain defined by the unit cell of Fig. 1 is 
specified, Eqs. (1) - (10) deliver the resulting velocities, pressure and temperature fields in the 
domain. 
 The optimization objective is to find the optimal spacing between rows of tubes, S, 
such that the volumetric heat transfer density is maximized, subject to a volume constraint. 
The engineering design problem starts by recognizing the finite availability of space, i.e., an 
available space L × H × W  as a given volume that is to be filled with a heat exchanger. To 
maximize the volumetric heat transfer density means that the overall heat transfer rate 
between the fluid inside the tubes and the fluid outside the tubes will be maximized. 
 In order to perform the comparison between the elliptic and circular arrangements, a 
criterion was adopted to preserve similar flow characteristics in the unit cell, i.e., the flow 
obstruction cross sectional areas of the arrangements under comparison were made equal. The 
same criterion was adopted by Rocha et al. (1997) for tubes and plate fin heat exchangers. 
Hence, in all cases, the diameter of the circles, D, was equal to the smaller axis of the ellipses, 
2b. The laminar regime for air crossing a bundle of tubes is observed when 200ReD ≤ , 
which is the Reynolds number based on the tube diameter (Stanescu et al., 1996). 
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Figure 1 - Problem sketch and computational domain. 

 
3. RESULTS AND DISCUSSION 
 

The finite element method was used to discretize the fluid flow and heat transfer 
governing equations (1) – (10) and a 2-D isoparametric, four-noded, linear element was 
implemented for the finite element analysis program, FEAP (Zienkiewicz and Taylor, 1989). 
This way, the velocities and temperature fields in the unit cell of Fig. 1 were determined. 
 Initially, the dimensionless overall thermal conductance q~ , or volumetric heat transfer 
density for the circular arrangements was defined as follows, for the sake of comparison with 
the results of Stanescu et al. (1996): 
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where the overall heat transfer rate between the tubes and the free stream, q, has been divided 
by the constrained volume, LHW; k – fluid thermal conductivity, W/(m.K), and 2b = D – 
ellipse smaller axis or tube diameter. 
 The calculation of q~  is conducted numerically, re-arranging equation (11) as follows: 
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where "

iq  - average normal heat flux at the i-th tube surface, 2m/W ; ecN  - number of 

elemental channels (or unit cells) and N – number of tubes in one elemental channel. 



 In equation (12), "
iq  is calculated from the local normal heat flux at the tube surface, 

as 
 

i

"
i n

T
kq 







∂
∂−=   , i = 1,…., N    (13) 

 
where n – normal direction. 
 The computation of the heat fluxes for equation (13) is done by post-processing the 
temperature results obtained from the finite element solution. 
 For the comparison between the elliptic and circular arrangements, the dimensionless 
overall thermal conductance is computed alternatively from a balance of energy in one 
elemental channel, noting that: 
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 +ρ= ∞� , which is the fluid mass flow rate entering one elemental 

channel, kg/s; pc  - fluid specific heat at constant pressure, J/(kg.K), and outT  - average fluid 

temperature at the elemental channel outlet. 
 The dimensionless overall thermal conductance computed by equation (11), using 
equation (14) is therefore renamed as 

*
q~ . The calculation of 

*
q~  is conducted numerically, re-

arranging equation (11) as follows: 
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 The results obtained from equation (15) are therefore expected to be more accurate 
than the results obtained with equation (12). The reason is that the former are obtained 
directly from the finite element temperature solution, whereas the latter are obtained from 
post-processing the finite element solution. It is well known that the numerical error in the 
derivative of the solution is larger than the numerical error in the solution itself. 
 To obtain accurate numerical results, several mesh refinement tests were conducted. 
The monitored quantity was the dimensionless overall thermal conductance, computed either 
with equation (12) or with equation (15), according to the following criterion: 
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 The criterion defined by equation (16) was used to test the extension of the 
computational domain defined in the unit cell of Fig. 1. An extra-length L/2 had to be added 
to the computational domain, upstream and downstream of the unit cell to represent the actual 
flow, and satisfied equation (16), when compared to an extra-length L. For all cases, the mesh 
was established with 5460 nodes and 5180 elements, which satisfied equation (16) when 
compared to a mesh with 5670 nodes and 5380 elements. All meshes were more refined in 
the regions close to the tubes where the highest gradients in the solution were expected. 
 The numerical results obtained with the finite element code are validated by direct 
comparison to previously published experimental results for circular tubes heat exchangers 



with equilateral triangle staggering configurations obtained with L = 39.2 mm, H = 35.2 mm, 
W = 134 mm and D = 6.35 mm (Stanescu et al., 1996).  

All the arrangements in this study (elliptic and circular) had 6Nec =  and N = 4. 

The numerical results shown in Fig. 2 were obtained with equation (12). Figure 2 also 
shows the experimental results obtained by Stanescu et al. (1996) for 

100 and 50
DU

ReD =
ν

= ∞ . The experimentally determined q~  agrees qualitatively with the 

numerical results, mainly with respect to the identification of ( )optD/S . The agreement is 

remarkable if we think that the tested array was not a large bank of cylinders and, in the 
experiments, with uniform heat flux, while in the numerical simulations it was infinitely 
wider and with isothermal cylinders. 
 Next, numerical optimization results are obtained for the circular and elliptic 
arrangements, for general staggering configurations. The dimensionless thermal conductance 
is hereafter computed with equation (15), in the form of 

*
q~ . 
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Figure 2 - Numerical and experimental results for circular tubes heat exchangers with 

equilateral triangle staggering configurations. 
 

 Figures 3 and 4 show maxima for 
*

q~  with respect to (S/2b), for two different values 

of ellipses eccentricity, i.e., e = 0.8 and 0.65: 
 

a
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where b – smaller ellipse semi-axis and a – larger ellipse semi-axis. 
 The influence of the variation of LRe  is also investigated in Figs. 3 and 4. As LRe  

increases 
*

q~  increases. The maximum is less pronounced for lower values of LRe . 
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Figure 3 - Numerical results for elliptic tubes (e = 0.8) heat exchangers with general 

staggering configurations. 
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Figure 4 - Numerical results for elliptic tubes (e = 0.65) heat exchangers with general 

staggering configurations. 
 
 Figures 5 and 6 show the effect of ellipses eccentricity on 

*
q~ , for 465ReL =  and 

620, respectively. As the eccentricity decreases, 
*

q~  increases, therefore the elliptic geometry 

improves the overall heat transfer rate between the tubes and the free stream. 
 The results reported in Figs. 3 – 6 are summarized in Figs 7 and 8. The effect of 
ellipses eccentricity on max,*

q~ is depicted in Fig. 7, where, for all LRe , max,*
q~  increases as the 

eccentricity decreases, i.e., the flatter the ellipses are the higher the overall heat transfer will 
be. In a quantitative analysis, it is important to stress that a 13 % maximum relative heat 
transfer gain, in comparison with the traditional circular arrangement, was observed for the 
elliptical arrangement with e = 0.65, in the numerical simulations. Figure 8 shows that the 
optimal spacing decreases as the free stream velocity (or LRe ) increases. 

 There was no loss of generality of the results by fixing 6Nec =  in the present study, 

as it is deduced through equations (12) and (15). The effect of varying the number of tubes in 
one elemental channel, N, is still to be investigated, but it should be noted that a/LN =  
represents the limit where the ellipses ends (edges) touch. However, it is not difficult to verify 
that 
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Figure 5 - The effect of ellipses eccentricity on 
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Figure 6 - The effect of ellipses eccentricity on 

*
q~ ( )620ReL = . 
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Figure 7 - The effect of ellipses eccentricity on the maximum overall thermal conductance. 

the figure of merit given by equation (11) is an analogue of the average Nusselt number for 

the whole arrangement, ( ) k/b2hNuq~ == , noting that 
( )
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= , where h  - 



equivalent average heat transfer coefficient, ( )K.m/W 2 . Therefore, for a larger number of 

rows, ( )max,*max q~or   q~  computed for N = 4 is a fairly good approximation. This is explained 

by the fact that, with a large number of rows, the flow will be fully developed, therefore with 
no significant changes in the average Nusselt number for a particular geometry, either circular 
or elliptic. This behavior was observed experimentally comparing three-row circular results 
reported by Saboya and Sparrow (1976), with two-row circular results reported by Rosman et 
al. (1984), both for finned heat exchangers. The same phenomenon was also observed 
numerically in a recent study by Fowler et al. (1997), for staggered plates in forced 
convection, where it was reported that the effect of N on maxq~  is almost nonexistent for 
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Figure 8 - The effect of ellipses eccentricity on the optimal spacing for maximum overall 

thermal conductance. 
 
4. CONCLUDING REMARKS 
 
 This study demonstrates that the geometric arrangement of staggered circular or 
elliptic tubes can be optimized for maximum heat transfer, when the optimization is subjected 
to an overall volume constraint. The existence of optimal spacings between rows of tubes was 
demonstrated through numerical results obtained from two alternative ways, i.e., equations 
(12) and (15). The approach was to formulate the problem fundamentally as a volume-
constrained geometric optimization study, where appropriate nondimensional groups were 
identified and generalized results presented in dimensionless charts. From the point of view 
of practical application of the results herein presented, it is important to stress that they will 
apply depending on how similar the actual design under consideration is to the configuration 
presented in Fig. 1, such that the approximate optimal geometry can be predicted. However, 
from the fundamental point of view, the results show that there will always be an optimal 
spacing between rows of tubes in circular and elliptic tubes heat exchangers, which is 
important to be found. 
 From the heat transfer point of view, it was shown that the elliptic configuration 
performs better than the circular one. Among the studied cases, a maximum relative heat 
transfer gain was of 13 %, for e = 0.65, with 465ReL = . The heat transfer gain, combined 
with the relative pressure drop reduction of up to 25 % observed in previous studies (Brauer, 



1964; Bordalo and Saboya, 1995) show the elliptical arrangement has the potential for a 
considerably better overall performance than the traditional circular one. 
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