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Abstract. The present work develops a numerical method for the buoyancy–driven flow in
rectangular enclosures. The configuration consists of two isolated horizontal walls and two
vertical walls at temperatures Theat and Tcold. The analysis is based on the incompressible
formulation with the Boussinesq approximation, which is appropriate for relatively small
temperature differences between the vertical walls. The method is based on the finite
difference explicit Runge-Kutta multistage scheme for solving the Navier-Stokes, continuity
and energy equations. Numerical tests are carried out for fixed and oscillating cavities, where
the Coriolis force must be taken into consideration. Obtained results showed to compare well
with numerical/experimental data found in the literature for steady and unsteady flow
situations for Rayleigh numbers between 102 and 105 and Prandtl numbers ranging from
0.005 to 1.0.
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1.    INTRODUCTION

In free convection the fluid flows naturally being driven by the effect of buoyancy, which
is related to the tendency of gases to expand and to rise when heated, for example. It is know
that this problem exhibits complex flow features depending on the Rayleigh number, cavity
aspect ratio, temperature difference parameters and Prandtl number. For a heated vertical wall
the fluid in the proximity of the plate tends to rise, while the fluid far enough from the plate
remains undisturbed. Mass conservation requires that an equivalent quantity of mass go down
at neighbourhood of the vertical plate.

The development of computational fluid dynamics and the advent of even more powerful
computers allow the faster and more accurate calculation of flow fields inside configurations
of technical interest. Cavities followed by fluids are components of a long list of engineering
and geophysical systems (Bejan, 1984).

Common methods employed to solve natural convection flows are the finite volume,
finite difference and finite elements. The finite difference is an easy and efficient one.
Besides, for transient incompressible fluid flows it is better to employ explicit methods,
because  of  the  small   pressure   gradient.   Therefore,  the  present   work  develops  a  finite



difference explicit Runge-Kutta multistage scheme, with central spatial discretization for the
solution of mass conservation, Navier-Stokes (in x and y directions) and energy equation.
Because of the advantages of the code structure it was possible to write an efficient numerical
code.

Numerical tests are carried out for steady and unsteady flows for the Prandtl numbers
between 0.005 to 1 and Rayleigh numbers between 102 and 6.5x105, and they are found to
compare well with numerical/experimental data found in the literature.

2.   GOVERNING EQUATIONS

For relatively small temperature differences between the vertical walls the incompressible
formulation with a Boussinesq approximation has shown to be appropriate for solving natural
convection flows (Choi and Merkle, 1993; Maliska, 1995). So, momentum conservation
equations are used to obtain velocity vector components, energy conservation to temperature
and continuity equation for pressure. As pressure does not appear in an explicit form in the
continuity equation, an equation for pressure is obtained through derivation of momentum
equations in x and y directions, respectively, resulting a Poisson’s equation, which takes into
account the continuity relation. Although temperature differences originate velocity gradients,
numerically the pressure-velocity coupling remains important. For bidimensional flows the
set of governing equations can be written in the following form

Momentum conservation
x direction
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Poisson’s equation for pressure
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Energy conservation
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Here ρ  is the fluid density , u and v the velocity vector components,  p the pressure, T the
temperature, t the time, ν the kinematic viscosity, g the acceleration of gravity, K the thermal
conductivity, β the volumetric expansion coefficient, α the thermal difusivity and finally cp

the constant of specific heat transfer.
For oscillating cavities, on the other hand, the governing equations must be written taking

into account the Coriolis forces, resulting the following set of equations
Momentum conservation



x direction
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y direction
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Poisson’s pressure equation
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where
( )θ∆β sinTgS x =

( )θ∆β cosTgS y =

with
)ft2cos(f2 max πθπ=Ω                                                                                                    (8)

being θ the angle of inclination and θmax it’s maximum value, f the frequency of oscillation
and Ω the angular velocity. Following the numerical procedure is indicated.

3.   DESCRIPTION OF THE NUMERICAL METHOD

The set of governing equations (1) – (4) or (4) – (8) is approximated using the finite
difference method because we intend to use a faster, accurate, simple and cheaper method.
Joining the above factors central differences are used for convective as well as diffusive
terms, while a forward approximation is adopted for time varrying terms based on Runge-
Kutta time-stepping scheme.

The domain is divided into points, where each cell is labelled according to it’s index
point (i,j), as show in Fig. 1 (Wendt, 1996). Both velocities, pressure and temperature are
centred at each point (i,j). Extension to generalised coordinates is based on the chain rule as
well explained by Maliska (1995).

Figure 1 – Grid cell for each point (i,j) in the computational domain.
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After approximation Eq. (5) results in the following form:
Momentum conservation
x direction
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The other equations, momentum in y direction, Poisson and energy, are approximated in a

similar manner.
Wall boundary conditions are no slip, two isolated horizontal walls and two vertical walls

at different temperatures and zero normal pressure gradient. In reality the pressure must be
fixed at least at one point, because pressure gradients are necessary in order to originate
velocity gradients. Besides, pressure values are approximatly the atmospheric value.

4.   NUMERICAL RESULTS

In the following, numerical results for rectangular cavities are presented and compared
with numerical/experimental data found in the literature. Streamlines and isothermals are
employed because they well represent the problem of interest. The results are divided in two
classes: for steady and unsteady flows.

4.1. Results for steady flows

The first case considers the flow into a square closed cavity (1 x 1), heated at its left side
and cooled at right side, being the horizontal walls isolated. In all cases the basic form of the
flowfield is a recirculatting roll. This recirculation is driven by the generation of vorticity by
the horizontal temperature gradient of 100 degrees (313K - 213K) for Prandtl 0.733 (used for
gases). The computational mesh used contains 30 x 30 cells and a stretching factor 1.05 from
cell to cell in both x and y directions, obtaining adequate concentration mainly at proximity of
corners.

Figure 2 and 3 show the streamlines for varying Rayleigh numbers between 102 and 105,
whose agreement with the results found by Arpace and Larsen (1984) is adequate. Although
the streamline values were not indicated, their behaviors is similar and were obtained by
different numerical methods.

Figure 2 - Streamlines for square cavity for Rayleigh a)102, b)2.5x103, c)2.5x104 and d)105.

d)c)b)a)



Figure 3 - Streamlines for square cavity from Arpace and Larsen (1984) for Rayleigh a)102,
b)2.5x103, c)2.5x104 and d)105.

The isothermals have the same behavior as shown in Fig. 4 and 5. For Rayleigh 102 heat
propagates from the walls until the cavity center, because at this Rayleigh number the
diffusion is dominant for Pr = 0.733 (Pr < 1). So, the viscous effects scatter almost in a linear
way, originating a circular movement inside the cavity (Maliska, 1995).

Figure 4 – Isothermals for square cavity for Rayleigh a)102, b)2.5x103, c)2.5x104 and d)105.

Figure 5 - Isothermals for square cavity as Arpace and Larsen (1984) for Rayleigh a)102,
 b)2.5x103, c)2.5x104 and d)105.

Increasing the Rayleigh number to 2.5x103 the isothermals start to be more curved. The
same behavior is also observed for Ra = 105, but now the temperature effects not propagate
until the cavity center as before (iso temperature lines remain almost horizontal at cavity
center).

Now a rectangular 1 x 4 cavity and a grid containing 40 x 60 uniform distributed points is
used. Grid stretching turns the convergence of the finite difference method more difficult,
specially when the stretching factor is bigger them 1.2 (or 20% increase from cell to cell).
Figure 6 and 7 show the streamlines for rectangular 1 x 4 cavity for Rayleigh between 102 and
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2.2x103 for different Prandtl numbers (between 0.005 and 1). Prandtl of order 1 is common
for gases. An adequate resemblance between our and the literature results is observed.
Remember that the number of curves is not the same, because their values were not indicated
in the literature (Alchaar and Vasseur, 1995).

Figure 6 - Streamlines for 1x4 rectangular cavity a)Ra=2x102 and Pr=0.01, b)Ra=8x102

and Pr=0.01,c)Ra=4x102 and Pr=0.005 and d)Ra=2.2x103 and Pr=1.

Figure 7 - Streamlines for 1x4 rectangular cavity as Alchaar and Vasseur (1995), a)Ra=2x102

and Pr=0.01, b)Ra=8x102 and Pr=0.01, c)Ra=4x102 and Pr=0.005 and
d)Ra=2.2x103 and Pr=1.

Following, numerical results for small curved enclosures are presented in order to
identify if important differences for the same Rayleigh and Prandtl numbers appear. Figure 8
shows the streamlines for curved 1 x 4 cavity for internal 2,05 and external 3,05 radios,
respectively. Again, the fluid flows parallel to the upper and lower surfaces and near the
corners it rotates 180° degrees. Although Rayleigh is equal to 102 in Figs. 8a) and 9a), the
convective effects are stronger because of the small Prandtl number. For Rayleigh 8x102 and
Prandtl 0.01 the parallel flow structure starts to broken. For Prandtl 1 and Rayleigh 2.2x103

the flow recuperates its initial configuration, which  means that appear a recirculating big
vortex inside the complete cavity. More interestingly results can be obtained increasing again

b)a)

 c) d)

c) d)

b)a)



Rayleigh number for small Prandtl numbers. However, such transient and turbulent flow
behavior is very complex and will be analysed in a future work.

Figure 8 – Streamlines for rectangular 1 x 4 curved cavity a)Ra=2x102, Pr=0.01;
b)Ra=8x102, Pr=0.01; c)Ra=4x102, Pr=0.005 and d)Ra=2.2x103, Pr=1.

4.2 Unsteady cavity flows

After calibration of the numerical code for steady flows, considers the transient flow
inside a square closed 1 x 1 cavity, with its left side at 213K and the right side at 363K, being
the two horizontal walls isolated. Considers that the enclosure oscillates around its center
axis. In this way, at a special time with θ = 0 the flutuability effects will accelerate the flow to
follow in a certain way, while the Coriolis forces will act on the opposite side, depending on
the instantaneous direction of cavity acceleration.

For this flow situation small recirculations appear and the grid needs to be refined. So a
90 x 90 mesh was employed for a stretching factor 1.02 through the use of  an in-house mesh
generator (simple and efficient one). Obtained results from Moh et al. (1996) were used for
comparison, although they employed more complex numerical techniques. First results were
obtained for Pr = 0.02 and Ra = 1.2x105 for the fundamental frequency of oscillation f =
329.6 (For details see Moh et al., 1996). The cavity oscillates between 10 and –10 degrees.

Figure 9 and 10 display the isothermals obtained for this flow situation for times varying
between t = 0.5006 and t = 0.5034, and show that they are concentrated at proximity of
vertical walls.

Following, numerical results for Pr =0.03 and Ra = 6.5x105 for frequency f = 829.88 are
also presented. Here a central vortex appear together with four small vortices at proximity of
cavity corners, as well as other small vortices at proximity of cavity center.

b)a)
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Figure 9 - Isothermals for square cavity at special time and angles for Rayleigh 1.2x105

a)t=0.5006, θ=0°; b)t=0.5009, θ=5°; c)t=0.5014, θ=10°; d)t=0.5019, θ=5°;
e)t=0.5021, θ=0°; f)t=0.5024, θ=-5°; g)t=0.50029, θ=-10° and h)t=0.5034, θ=-5°.

Figure 10 - Isothermals for square cavity at special time and angles for Rayleigh 1.2x105 as
Moh et al (1996) a)t=0.5006, θ=0°; b)t=0.5009, θ=5°; c)t=0.5014, θ=10°; d)t=0.5019,
θ=5°; e)t=0.5021, θ=0°; f)t=0.5024, θ=-5°; g)t=0.50029, θ=-10° and h)t=0.5034, θ=-5°.

These secondary rolls are generated because at high Rayleigh and/or small Prandtl
numbers there is an intense development of thermal boundary layers in the vicinity of the
wall, which leads to sign reversal for the temperature and pressure gradients (Choi and
Merkle, 1993).

General behavior obtained through comparison of Figs. 11 and 12 is the same except for
Fig. (12c)). Such a behavior seems to be not real, besides the vortices at corners almost
disappeared, what can be related to deficiencies of the numerical technique employed or the
postprocessing software used by Moh et al (1996).
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Figure 11 – Streamlines for unsteady flow in a 1 x 1 square cavity a)t=0.5, b)t=0.5004,
c)t=0.5007 and d)t=0.501.

Figure 12 – Streamlines for unsteady flow in a 1 x 1 square cavity as Moh et al (1996)
a)t=0.5, b)t=0.5004, c)t=0.5007 and d)t=0.501.

Finally, Fig. 13 and 14 show the isothermals for the same flow situation as shown by
Figs. 11 and 12. It can be said that the agreement between the results indicated by both figures
is adequate. Isothermals are concentrated in the neighborhood of vertical walls, as expected,
because of the high Rayleigh and small Prandtl numbers.

Figure 13 – Isothermals for unsteady flow in a 1 x 1 square cavity, a)t=0.5, b)t=0.5004,
c)t=0.5007 and d)t=0.501.

Figure 14 – Isothermals for unsteady flow in a 1 x 1 square cavity as Moh et al (1996)
a)t=0.5, b)t=0.5004, c)t=0.5007 and d)t=0.501.
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5. CONCLUSIONS

Numerical results show that the method used here is able to well represent steady and
unsteady flows inside cavities. Big and small recirculation zones were well represented when
compared with numerical results found in the literature employing more complex and,
consequently, more expensive numerical methods.

Tests using CRAY T94 showed a code performance of around 1040 Mflops, what means
that the code was efficiently written. Remember that commercial codes used at same
computer have performance usually less than 200 Mflops.

Special care has been taken at treatment of Coriolis terms when solving flows for rotating
cavities. Besides, for curved geometries a generalized form of governing equations was
necessary in order to represent the flow behavior.

It was shown that the counter-rotating simple vortex configuration appears for square and
rectangular cavities. For rectangular cavities of 1x4 and 1x10 and for high Rayleigh and low
Prandtl numbers the counter rotating double vortex starts to appear. Besides, increasing
Prandtl number decrease the flow instabilities, as expected.

Several additional problems have also been successfully computed with this method but
are not presented here for reasons of space. As it can be seen, this work opens several
possibilities for natural convection application analysis, mainly because of its characteristics
in generalized coordinates. Performance of the developed code showed to be the same when
solving flows into curved cavities.

Therefore, the author’s opinion is that the numerical results are encouraging. However,
much work must still be done in order to obtain unsteady flows into cavities for smaller
Prandtl and higher Rayleigh numbers that the ones presented in this work.
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