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Summary. Natural convection in a rectangular open cavity with the presence of an

isothermal shrouding wall is investigated. The horizontal walls of the cavity are adia-

batic. One vertical wall is heated uniformly and another is open to a uid reservoir. The

shrouding wall is placed in front of this opening forming a vertical channel. Laminar and

two-dimensional ow is assumed for a Rayleigh number ranging from 103 � 107. The

numerical solution is carried out with the Finite Volume-SOLA method. The aspect ra-

tios considered are B = L=H= 0.5, 3.0 e 6.0, where L and H are the cavity width and

height, respectively. The Rayleigh number and the aspect ratios e�ect on the isotherms,

streamlines and average Nusselt number are reported.
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1. INTRODUCTION

The importance of studying natural convection heat transfer in a cavity with elec-

tronic components has increased in recent years. Among the advantages of using natural

convection in such kind of problems, possibly the most importants are safety, reliability

and low cost. Other engineering applications like building insolation and solar cavity

receivers have received a lot of attention too.

Reviewing the technical literature, one can �nd many works studying the problem of a



heated cavity with an opening to a uid reservoir. One can mention the papers by Penot

(1982), Chan e Tien (1985a), Chan e Tien (1985b), Chan e Tien (1986), Humphrey and

To (1986), Angirasa et al. (1992) and Angirasa et al. (1995). All these previous studies

did not consider the e�ects of a shrouding wall. In a recent paper, Franco and Ganzarolli

(1998) carried out a numerical study of a thermally driven square open cavity open to a

uid reservoir with and without a shrouding wall.

The present paper has as purpose to investigate the heat transfer phenomenon in

a thermally-driven rectangular open cavity as a function of the aspect ratio B and the

distance between the opening and the shrouding isothermal wall. One will use an extended

computational domain outside of the cavity.

2. PROBLEM FORMULATION

The cavity geometry and the boundary conditions are shown in Fig. 1. The open

cavity is the L � H domain. The extended domain is the region b � Z, where Z = 5H.

The vertical wall inside the cavity is maintained at constant temperature Th and the uid

reservoir (or ambient) at To. Laminar ow is assumed and the Boussinesq approximation

is considered valid. The dimensionless variables are de�ned below.
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where T � indicates the dimensional temperature value.

Using the variables above, one can write the dimensionless conservation equation for

mass, momentum and energy in transient form as
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Figure 1: Geometry and the coordinate system

where the quantities Pr = �=� and Ra = g�H3(T �h � T �
1
)=�� are the Prandtl and the

Rayleigh numbers, respectively.

The boundary conditions at the borders show in Fig. 1 are

(1)! U = V = @T=@X = 0: (10)

(2)! U = V = @T=@Y = 0: (11)

(3)! U = V = 0eT = 1: (12)

(4)! U = V = @T=@Y = 0: (13)

(5)! U = V = @T=@X = 0: (14)

(6)! (@U=@Y ) = (@V=@Y ) = (@T=@Y )out = 0 and Tin = 0: (15)

(7)! U = V = 0 and T = 0: (16)

(8)! (@U=@Y ) = (@V=@Y ) = (@T=@Y )out = 0 and Tin = 0: (17)

The average Nusselt number on the heated wall, Nu, is de�ned as

Nu =
Z

1
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dY = Nu(Ra; Pr; B): (18)

The dimensionless stream function is

	(X; Y ) = �
Z X

Xo

V (X; Y )dX +	(Xo; Yo): (19)

where the value 	(Xo; Yo) is zero in the solid walls.

The dimensionless volumetric ow rate is de�ned as

_m =
Z
Opening

UindY: (20)



Uin = UX=b=H if UX=b=H > 0

Uin = 0 if UX=b=H � 0

3. NUMERICAL PROCEDURE

The equations above were solved with the Finite Volume Method (Patankar, 1980) for

spatial discretization and the SOLA method for time discretization (Hirt et al. (1975)).

The SOLA method consists of advancing in time the velocity and pressure �elds from a

previous values of velocities, stopping the procedure when convergence criteria is reached

max

������
n+1

� �n

�n+1

����� < 10�5: (21)

where � = U; V; T and Nu.

The numerical code was validated by checking this with the Chan and Tien (1985b)

results. For example, at Ra = 106 and using 21� 21 points inside the cavity, the values

obtained for Nu and _m are 15.0 and 47.3 against 15.0 and 47.6 obtained by Chan and

Tien (1985b).

For an aspect ratio like B =1.0 and Ra = 105, when the points inside the cavity are

increased from 21�21 to 31�31, the verage Nusselt number variation is less than 0.2%.

4. RESULTS AND DISCUSSION

In this section is solved the natural convection problem schematically showed in Fig. 1.
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Figure 2: Isothermals and streamlines for Ra = 104 and B = 0:5



The cavity aspect ratios considered are B = L=H =0.5, 3.0 and 6.0 for a Rayleigh

number ranging fromRa = 103�107. The distance between the opening and the shrouding

wall, b=H, is considered as 0.5 and 0.2. The Prandtl number is set at 1.0, which is

approximately air.

In the following �gures, the contour maps showing the isotherms and the streamlines

are plotted. The intervals between the isotherms are always �T = 0:1 and for the

streamlines it is shown together with each �gure. Only the region near the open cavity is

shown in order to save space.

Figure 2 shows for a Ra = 104, the isothermals and streamlines patterns when the

isothermal shrouding wall approximates to the opening of the cavity. In this case the

aspect ratio diminishes from b=H =0.5 to 0.2.

The e�ect of reducing de distance b=H, in Figs. 2, 3 and 4 is to limit the recirculation

zone into the cavity. When b=H is 0.2, the isothermals and streamlines are similar of that

cavity heated on the sides (Hortman et al. (1990) and L�e Qu�ere (1991)).
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Figure 3: Isothermals and streamlines for Ra = 104 and B = 3:0

When the cavity becomes deeper, the isotherms are distributed along the cavity,

diminishing the temperature gradient between the heated and the isothermal wall.

Figure 5 presents the dimensionless mass ow rate _M , which is induced by the heated

wall into the channel through the bottom boundary. One can see that for b=H = 0:5 the

channel ow appears at Ra �= 104. The channel ow is presented for b=H = 0:2 just when

the Rayleigh number is around or bigger than 105. In this section, the behavior of the

curves are practically the same. shrouding

Figure 6, for Ra = 103, shows the isotherms for the situation when the dominant heat

transfer mechanism is the conduction. The temperature gradient is practically the same

in both cases.

The boundary layer regime is shown in Fig. 7 for Ra = 106. Just the isothermals are



presented. For all aspect ratios B, when the isothermal shrouding wall gets closer of the

opening, the temperature gradient becomes higher on the heated wall.
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Figure 4: Isothermals and streamlines for Ra = 104 and B = 6:0

From a thermal engineering point of view, one of the most important parameters is

the average Nusselt number on the heated wall. The average Nusselt number as a function

of the Rayleigh number is shown in the Fig. 8.

At Ra = 103, considering that the conduction heat transfer mechanism is dominant,

the average Nusselt number is determined as

Nu �=
h:H

k
�=
H

L
= (B)�1: (22)

where h is determined as a function of the total heat transfer Q = h:H:�T �

Q �= k:H:
�T �

L
:



where h �= k=L. Equation (22), provides the following values for the average Nusselt

number: 2.000, 0.333 e 0.167 for B =0.5, 3.0 e 6.0, respectively.
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Figure 5: Volumetric mass ow (rate) _M entering in the channel

As it was pointed by Chan e Tien (1985a), the average Nusselt number approaches its

value for the vertical wall in an in�nite medium. The average Nusselt number is expressed

by

Nu �= Ra1=4: (23)

which is the power-law for a vertical boundary layer generates by natural convection.
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Figure 6: Isothermals for the conduction limit and Ra = 103
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Figure 7: Isothermals for the boundary layer regime and Ra = 106
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Figure 9: Aspect ratio e�ect on the volumetric ow rate _m

Figure 9 illustrates the volumetric ow rate, _m, induced through the cavity by the

heated wall. The Chan and Tien (1985a) results are plotted for comparison and they are

valid when there is not the presence of the shrouding wall. It is noted that there is a

change in the curve slope for b=H = 0.5 and Ra �= 4:5� 104.

5. CONCLUDING REMARKS

In this work was studied the aspect ratio e�ect in a thermally-driven rectangular open

cavity with an isothermal shrouding wall. The aspect ratios considered were B = L=H =

0:5, 3.0 and 6.0 and the horizontal distance between the shrouding and the opening was

done as b=H=0.2 and 0.5.

The limit when b=H (which is the distance between the opening and the shrouding

isothermal wall) tends to zero, becomes the patterns of the isothermals and streamlines

similar to the classical problem of the closed cavity heated on the sides.

For b=H=0.5, when the Rayleigh number is around 105 or bigger, the channel ow

appears. Otherwise, when Rayleigh is little than this value, the ow is restricted into the

cavity. For b=H=0.2, the channel ow appears just when Ra � 106.

At low Rayleigh numbers, little than 103, the Nusselt number can be evaluated as

Nu �= (B)�1, Equation (22), the inverse of the aspect ratio B = L=H. At high values

of the Rayleigh number, the results tend asymptotically for that of a natural convection

boundary layer in a vertical at plate, Nu �= Ra1=4, Equation (23).



The volumetric ow rate _m, induced into the cavity by the heated wall, for b=H=0.5,

changes the slope at Ra � 4:5� 104. After that point, the deeper cavity induces more _m

through the cavity. The behavior of the curves are analogous for b=H=0.2.

6. REFERENCES

Angirasa, D., Eggels, J. E. M. and Niewstadt, F. T. M., 1995, Numerical Simulation of

Transient Natural Convection from an Isothermal Cavity Open on a Side, Numerical

Heat Transfer, Vol. 28, Part A, pp. 755-768.

Angirasa, D., Pourqui�e, M. J. B. M. and Niewstadt, F. T. M., 1992, Numerical Study

of Transient and Steady Laminar Buoyancy-Driven Flows and Heat Transfer in a

Square Open Cavity, Numerical Heat Transfer, Vol. 22, Part A, pp. 223-239.

Bejan, A., 1993, Heat Transfer, John Wiley & Sons, USA.

Bejan, A., 1994, Convection Heat Transfer, John Wiley & Sons, 2a edi�c~ao , USA.

Chan, Y. L. and Tien, C. L., 1985a, A Numerical Study of Two-Dimensional Natural

Convection in a Square Open Cavities, Numerical Heat Transfer, Vol. 8, pp. 65-80.

Chan, Y. L. and Tien, C. L., 1985b, A Numerical Study of Two-Dimensional Laminar

Natural Convection in a Shallow Open Cavities, International Journal Heat Mass

Transfer, Vol. 28, n� 3, pp. 603-612.

Chan, Y. L. and Tien, C. L., 1986, Laminar Natural Convection in a Shallow Open

Cavities, Journal of Heat Transfer, Vol. 108, pp. 305-309.

Franco, A. T. and Ganzarolli, M. M., 1998, Numerical Study of a Thermally-Driven

Open Cavity With and Without a Shrouding Wall, Proceedings of the VII ENCIT,

November 03-06, Rio de Janeiro, Vol. 1, pp. 207-212.

Hirt, C. W., Nichols, B.D. and Romero, N.C., 1975, SOLA- Numerical Solution Algo-

rithm for Transient Fluid Flow, Los Alamos Laboratory, Report LA-5852.

Hortmann, M., Peric, M. and Scheuerer, G., 1990, Finite Volume Multigrid Prediction

of Laminar Natural Convection: Bench Mark Solution, International Journal for

Numerical Methods in Fluids, Vol. 11, pp. 189-207.

L�e Qu�ere, P., 1991, Accurate Solutions to the Square Thermally Driven Cavity at High

Rayleigh Number, Computer Fluids, Vol. 20, n� 1, pp. 29-41.

Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing

Corporation, USA.


