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Abstract.  A novel mathematical model derived from fundamental engineering principles for
simulating the spatial and temporal gas diffusion process within the alveolar region of the
lung was presented recently by Koulich et al. (1999). The model depends on a physical
property of the alveolar region termed effective diffusivity, function of the diffusivity,
solubility, and interface geometry of each alveolar constituent. Unfortunately, the direct
determination of the effective diffusivity of the alveolar region is impractical because of the
difficulty in describing the internal geometry of each alveolar constituent. However, the
transient solution of the macroscopic model can be used in conjunction with the lung
diffusing capacity (measured in laboratory via the single-breath technique) to determine the
effective diffusivity of the alveolar region. With the effective diffusivity known, the three-
dimensional effects of red blood cell distribution on the lung diffusing capacity can be
predicted via numerical simulations. The results, obtained for normal (random), uniform,
center-cluster, corner-cluster, and several chain-like distributions, unveil a strong
relationship between the type of cell distribution and the lung diffusing capacity.
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1. INTRODUCTION

The search for a universal correlation between the lung diffusing capacity and the
physical properties of each individual lung alveolar constituent (e.g., membranes, tissue,



plasma, red blood cells, etc.) has been a major research trust (Roughton and Foster, 1957;
Weibel, 1970; Crapo and Crapo, 1983; Crapo et al., 1988; Fedrespiel, 1989; Weibel et al.,
1993). Existing theories for estimating the lung diffusing capacity are limited by the difficulty
in characterizing the incredibly complex internal geometry (morphology) of the alveolar
region, including the distribution of red blood cells within the capillary bed (Hsia et al.,
1995).

The lung diffusing capacity, as defined, is a lumped parameter that can be estimated from
relatively simple measurements (Johnson et al., 1960; Newth et al., 1977; American Thoracic
Society, 1987) and used to indicate abnormalities in the respiratory diffusion process.
However, it is difficult to infer from variations in the lung diffusing capacity the precise cause
of the abnormality because the sensitivity of the lung diffusing capacity (a global parameter)
to local changes in the functionality of the lung is not well known. There is a need for linking
the local diffusion process occurring within the alveolar region to the measurable variations in
the global lung diffusing capacity parameter.

These observations provide grounds for seeking the development of suitable models that
simulate locally the gas diffusion process inside the alveolar region of the lung.
Unfortunately, using the classical gas diffusion equation at the alveolus-erythrocyte level
(referred here as the microscopic level) within a lung is impractical because: (1) the
dimensional scale of the domain ranges from decimeters to microns, requiring a tremendous
numerical resolution, and, more importantly, (2) the complex internal alveolar structure
(topology) is extremely difficult to access and to map.

A novel macroscopic model for simulating the gas diffusion within the alveolar region of
the lung, overcoming the scale and structure difficulties, was presented recently by Koulich et
al. (1999). A by-product of this model is the introduction of a macroscopic transport property
of the alveolar region, called effective diffusivity. As defined, this property depends on the
internal structure of the alveolar region, bringing back the very same structure-related
problem the model originally tried to overcome.

However, it is possible to determine the equivalent effective diffusivity of the alveolar
region by simulating numerically the single-breath CO-diffusion procedure done in the
laboratory and comparing the lung diffusing capacity obtained from the numerical results to
the lung diffusing capacity obtained experimentally. Once determined, the effective diffusivity
can be used with the three-dimensional, transient macroscopic diffusion model to investigate
the effects of red cell distribution on the lung diffusing capacity.

2. MATHEMATICAL MODELING

The macroscopic diffusion equation derived by Koulich et al. (1999) is
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where P  is the macroscopic effective partial-pressure of the gas being considered during

the diffusion process inside the alveolar region, t is the time, and Deff is the effective
diffusivity of the alveolar region. Recall that the macroscopic effective partial-pressure P  is

defined as the volume-averaged of the diffusing gas partial-pressure within an elementary
volume representative of the alveolar region. This elementary representative volume contains
all the constituents of the alveolar region, except the interior of the red blood cells. In fact, as
explained by Koulich et al. (1999), the interface between the interior red cell and the red cell



membrane is considered as an interior boundary of the numerical domain where a boundary
condition must be imposed.

Observe that once Deff is known, Eq. (1) can be solved easily by applying suitable initial
and boundary conditions. Therefore, there is no need to describe the internal structure of the
alveolar region when using Eq. (1). The structure-information is now embedded into Deff. The
difficulty is then transferred from modeling the mass diffusion process per se to determining
the effective diffusivity of the medium as a function of the structure and physical (molecular)
properties of each constituent within the alveolar region. Unfortunately, the mathematical
description of Deff is very complex (Koulich et al., 1999), involving the precise mapping of all
boundaries of each constituent within the alveolar region.

The lung diffusing capacity obtained in laboratory results from unsteady processes, such
as the diffusion process during the single-breath technique (Comroe et al. 1962, p.122). This
technique consists of having a subject inspiring a certain gas mixture with a low
concentration of CO, and holding it in for a certain period of time (generally ten seconds).
During this time, CO will diffuse from the alveolus region to the RBC’s. The process is
unsteady because the potential gradient driving the diffusion varies in time. The ratio between
the volumetric amount of CO absorbed per unit of time and the difference between initial and
final volume-averaged CO partial-pressure provides a measure of the lung diffusing capacity.

It is necessary, then, to model the diffusion process as occurring during the experimental
measurement of DL. Unfortunately, this means that the transient term of the macroscopic
model Eq. (1) must be retained. The model equation becomes then dependent on Deff, a
quantity not known a priori.

Not everything is lost, however. By mimicking the experimental procedure, numerical
simulations can be used to determine the correct value of the effective diffusivity that yields,
from the numerical results, the same lung diffusing capacity value as the one found
experimentally.

In the next two sections we present an overview of the lung diffusing capacity
calculations behind the single-breath technique and a procedure to find the equivalent
effective diffusivity of the alveolar region.

3. SINGLE-BREATH TECHNIQUE

The lung diffusing capacity of the alveolar region can be obtained from the single-breath
technique results using the Krogh equation (Comroe et al., 1962, p.351)
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P  is the initial value of the volume-averaged partial-pressure, the reference

pressure Pref is chosen as the total pressure of dry gases (equal to 9.51×104 Pa, or 713 mm
Hg), and VA is the alveolar volume equal to the inspired volume plus the residual lung volume
(a representative, normal, value for VA is 4,930 ml STPD). This equation can be derived from
a lumped capacity approach to the diffusion process inside the alveolar region.

The characteristic time constant for the diffusion process, according to Eq. (2), is
VA/(DLPref), typically equal to 24.4 s (using VA = 4,930 ml, DL = 17 mlCO/mmHg min, and Pref

= 713 mmHg). This means that it takes approximately 25 seconds for the volume-averaged
partial-pressure of CO (or concentration) in the lungs to be reduced to 37.3 percent of the



initial value. Notice that using the diffusion and solubility laws (Comroe et al., 1962, p. 350),
it is possible to show that the lung diffusing capacity of oxygen is about 1.23 times the
diffusing capacity of carbon monoxide. Therefore, the corresponding characteristic time for
diffusion of oxygen is approximately equal to 20 seconds.

The lung diffusing capacity can be obtained easily from the partial-pressure results, by
rearranging Eq. (2)
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During clinical single-breath tests, Eq. (3) is used for determining the lung diffusing
capacity.

It is easy to determine a condition for the validity of the lumped capacity approach (and
the validity of the Krogh equation) by considering the definition of the lung diffusing capacity
as equivalent to the definition of mass transfer coefficient from Newton’s Law of cooling. In
this context, one has
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4. ITERATIVE NUMERICAL SCHEME

The value of the effective diffusivity equivalent to a lung diffusing value obtained in the
laboratory can be found by using an iterative numerical approach as explained next.

Equation (1) can be used to simulate the diffusion process during the single-breath test,
for instance, but it is necessary to know a value for Deff.

As a first guess, the Deff value obtained from the steady-state analysis of Koulich et al.
(1999) can be used with Eq. (1) to determine the time-evolution of the volume-averaged CO
partial-pressure. Once the results are obtained, a lung diffusing capacity DL can be found from
Eq. (3). This value is not expected to match the lung diffusing capacity found experimentally,
because the initial Deff value (obtained from steady-state results) was just an approximation to
the correct value. Therefore, a new guess for Deff is used to simulate again the diffusion
process. The new results yield a new value of DL to be compare against the experimental
value. A predictor-corrector iteration scheme can then be used to fine-tune the Deff value used
in Eq. (1) until the correct (measurable) DL value is obtained from the numerical results.

5. TRANSIENT SIMULATIONS: NORMAL DISTRIBUTION

Transient numerical simulations of alveolar CO diffusion is performed by discretising
Eq. (1) using finite differences, and solving the algebraic equations within a representative
alveolar cubic domain. The initial condition is P (t) = P 0 = 133.3 Pa (= 1 Torr)

everywhere within the cubic domain, except at the RBC locations where the partial-pressure
of CO is always equal to zero, i.e., P h = 0. The domain boundary is set as impermeable to

gas diffusion, therefore, ∂ P /∂n = 0 at the boundary, where n is the coordinate along the

direction normal to the boundary. The red cell density is ρ = 0.034, and the cells are
distributed randomly (normal distribution) within the domain. Additional details of the



numerical procedure can be found in Koulich (1999). 
The estimated effective diffusivity found numerically by Koulich et al. (1999) from the

steady-state analysis, Deff = 9.4 × 10−8 m2/s, is used  in  Eq. (1)  as  a first guess to simulate the
transient process within the alveolar region. After several iterations, it is found that Deff =
2.68×10−7 m2/s yields results from which DL, obtained from Eq. (3), matches the value DL =
17 mlCO/(min mmHg) to within one percent.

The corresponding time-evolution of P , obtained with Deff = 2.68×10−7 m2/s, is shown

on Fig. 1 in terms of γ, where
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The results shown in Fig. 1 are very similar to the results obtained experimentally using
the single-breath technique for measuring the lung diffusing capacity. Observe that the time
decay of the volume-averaged CO partial-pressure seems to follow an exponential curve.

It is now possible to re-visit the criterion for the validity of Eq. (3). Quantitatively, one
has Pref ~ 105 Pa, �/A ~ 10−5/[0.035(10−1)3(3/6×10−6)] ~ 10−5 m−1, DL ~ 10−9 m3/sPa, Deff ~ 10−7

m2/s, and the left side of the inequality shown in Eq. (4) becomes approximately equal to 1.0.
This result indicates that the lumped capacity model, from which the Krogh equation can be
derived, is in the threshold of not being valid. This conclusion is corroborated by the
deviation of the curve γ versus t from the straight dashed-line also shown in Fig. 1.

The generally short (about 10 seconds) time duration of the clinical single-breath test
masks the deviation from the lumped capacity model. However, by allowing the numerical
simulation to proceed further in time, the resulting DL becomes time-dependent invalidating a
fundamental hypothesis behind Eq. (3), i.e., constant DL.
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Figure 1 - Transient diffusion: comparison of uniform, normal, cluster, and chain red cell
distributions, for ρ = 3.4 %. Center, half, quarter, and corner-chain distributions

refer to the location of the first red cell of the chain.



6. OTHER RED CELL DISTRIBUTIONS

Observe that the RBC distribution within the alveolar domain does not alter the effective
diffusivity of the domain (as long as the red cell density is the same), but it does affect the
lung diffusing capacity. This is because the effective diffusivity, as defined, does not depend
on where the red cells are within the domain, as they are simply internal boundaries for the
diffusion process modeled by the macroscopic Eq. (1). Consequently, other red cell
distributions can be simulated numerically once the effective diffusivity of the alveolar region
is determined for a certain RBC density, as long as the red cell density is kept the same.

In the previous section, the effective diffusivity of the alveolar region for RBC density
equal to 3.4 % was determined. Now, the transient CO diffusion process can be simulated
considering other red cell distributions, for the same RBC density. The equivalent lung
diffusing capacity for each RBC distribution can be calculated from Eq. (3), and compared to
the base lung diffusing capacity, DL-n = 17 mlCO/(min mmHg), of normal (random) red cell
distribution.

Initially, a uniform distribution is considered in which the RBC’s are uniformly
distributed in spaced within the domain. The resulting time-evolution of the partial-pressure
for this case is shown in Fig. 1, next to the result for the normal distribution.

The transient numerical simulation yields, from Eq. (3), the value DL-u = 17.9 mlCO/(min
mmHg) for the uniform distribution. In comparison with the lung diffusing capacity obtained
from the normal RBC distribution, the DL value from the uniform distribution is slightly
higher.  In fact, it would have been easy to anticipate the higher lung diffusing capacity of the
uniform distribution because this distribution maximizes the volume of influence of each red
cell within the domain, minimizing the competition for gas, which is characteristic of red cell
clustering. The very small increase in DL (approximately five percent) reveals that the normal
(random) distribution of red cells yields a configuration similar to the configuration for
optimum diffusion process obtained with uniformly distributed red cells.

To investigate the red cell clustering effect (reported by Koulich et al. (1999) for the case
of steady diffusion), two other red cell distributions are investigated. They are the center-
clustering and the corner-clustering distributions.

These distributions are obtained by clustering the red cells around the center of the
domain or adjacent to one of the corners of the domain, respectively.

The time-evolution of the volume-averaged partial-pressure for these cases is shown in
Fig. 1. Corresponding values of lung diffusing capacity, obtained using Eq. (3), are: DL-cec =
1.79 mlCO/(min mmHg) and DL-coc = 0.99 mlCO/(min mmHg), respectively for center and
corner clustering. The two cluster results show radical reduction in DL when compared to the
uniform and normal red cell distributions. This is expected because the RBC’s inside the
cluster are shielded by the red cells on the periphery of the cluster, becoming less effective
sinks of CO. This shielding effect was observed also during the simulations of the steady-
state model by Koulich et al. (1999), and in the two-dimensional capillary simulations
performed by Hsia et al. (1995).

Somewhat surprising is the strong effect of cluster-location on DL. The corner-clustering
configuration yields a low diffusion performance (lower than the center-clustering
performance) because the RBC cluster is placed adjacent to the corner-boundary of the
domain. That is, three out of the six cluster boundaries are left without access to CO.
Therefore, one would expect that DL-cec/2 ~ DL-coc, a prediction confirmed approximately by
the numerical results.

Obviously, one can expect the lung diffusing capacity to vary between DL-cec and DL-coc if
the same cluster is placed anywhere else in the domain. Moreover, it is believed that the



corner cluster provides the worst possible red cell distribution configuration, yielding a lower
bound value for the lung diffusing capacity. Assuming the DL value for uniform red cell
distribution as an upper bound value, the effect of red cell distribution on DL then spreads
itself within a range from 0.99 to 17.9 mlCO/(min mmHg).

A different red cell distribution, called chain-type, is also investigated. The chain is
formed by placing the red cells consecutively along a line in the domain, following a random
path. Therefore, each red cell has at least one neighboring red cell. The starting point of the
chain varies from the center to one of the corners of the domain, along one of the diagonals
(see top right section of Fig. 2). A half-chain distribution refers to a chain having the first cell
placed halfway between the center and the corner of the domain. A quarter-chain distribution
refers to a chain having the first cell placed a quarter of half-diagonal length from the corner
of the domain. Results of the volume-averaged partial-pressure evolution in time are
summarized in Fig. 1.

Amazingly, the chain distributions yield similar lung diffusing capacity coefficients (see
Table 1), distinct to what was observed when comparing the lung diffusing capacity of
clustering distributions. It seems as if the starting location of the random chain is irrelevant to
the lung diffusing capacity. It is possible, for this type of distribution, that the distance
between red cells be a predominating factor.

Trying to quantify the location-versus-distance effect of red cell distribution, we devised
two geometrical parameters to help characterize each distribution. The geometrical
significance of these two parameters is better understood considering the simplified two-
dimensional sketch shown in the lower right section of Fig. 2. One of these parameters is the
distance between the geometrical center of the red cell distribution, defined by the coordinates
(Xc,Yc,Zc), and the center of the domain at (X0,Y0,Z0). The coordinates of the geometrical
center of the red cell distribution are found from the equation
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Figure 2 - Two-dimensional schematic representation of chain-type red cell distributions:
center, half, quarter, and corner refer to the location of the first red cell of the chain.



where (xi,yi,zi) are the coordinates of each red cell, and N is the total number of red cells in
the domain. Hence, the distance to the center of the domain is simply,
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The other geometrical parameter characterizing the red cell distribution is the effective
radius of the red cell distribution, r,
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One can see in Fig. 2 the representative distance d and radius distribution r for the two
red cells shown in the figure. A large d-value indicates the cell distribution is far from the
center, hence, close to the boundaries where the diffusion process is less effective. A small r-
value indicates the red cells are close together, maybe forming a cluster, also leading to a less
effective diffusion configuration. Hence, d and r are in principle two good candidates for
quantifying the sensibility of the lung diffusing capacity to red cell distribution.

Values of d and r normalized in respect to the diagonal half-length of the domain, and
values of DL for each red cell distribution normalized by the normal DL value are summarized
in Table 1. Observe first that the uniform and center-clustering distributions are not perfectly
centered in the domain. This is because the number of red cells necessary to reach 3.4 percent
red cell density does not allow a perfectly symmetric distribution in relation to the center of
the three-dimensional domain. The distortion caused by this effect, however, is minor.

Table 1. Normalized lung diffusing capacity, red cell distribution distance from the center of
the domain d, and distribution radius r. DL-n is the lung diffusing capacity of normal RBC

distribution; s is the half-length of the diagonal of the alveolar domain (see Fig. 2).

Distribution: DL/DL-n d/s r/s

Uniform 1.05 0.05 0.47

Normal 1.00 0.03 0.48

Cluster:

Center 0.11 0.15 0.27

Corner 0.06 0.55 0.21

Chain:

Center 0.56 0.31 0.42

Half 0.62 0.19 0.44

Quarter 0.64 0.20 0.44

Corner 0.63 0.24 0.42



Notice from Table 1 that the normal (random) and uniform distributions have very
similar d and r, and that is why these two distributions yield very similar DL. The d and r
values for the two cluster distributions indicate that d, varying by 270 percent, is not very
influential on the value of DL, varying only 29 percent. This observation is confirmed also by
the values of d for the chain distributions for which r is relatively constant, confirming our
earlier expectation that the random chain path produces similar distributions in terms of r,
independently from where the chain starts.

Based on these observations, the normalized lung diffusion values presented in Table 1
are plotted versus the normalized radius of distribution, shown in Fig. 3. The straight line is a
polynomial curve-fit, namely
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Observe that 15 percent error bars are also depicted in Fig. 3, a deviation effect attributed to
the parameter d not accounted for in Eq.(10).

7. SUMMARY AND CONCLUSIONS

By mimicking the single-breath experimental technique within a hypothetical cubic
domain with 3.4 percent red cell distributed randomly (normal distribution), the iterative
numerical simulation of the transient model leads to an effective diffusivity value equivalent
to the measured lung diffusing capacity. With this effective diffusivity, a quantity independent
of the red cell positioning within the domain, several red cell distributions are investigated.

The equivalent lung diffusing capacity of each red cell distribution is obtained, from the
numerical results, using the Krogh equation. An analytical criterion for the validity of the
single-breath lumped-capacity model is also presented.

Results for normal (random), uniform, center-clustering, corner-clustering, and four
chain-like random distributions suggest a strong influence of red cell distribution over the
lung diffusing capacity. The introduction of two descriptive geometrical parameters,
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characterizing the red cell distributions, help identify the predominance of the distribution
radius on the lung diffusing capacity. A polynomial correlation is proposed for estimating the
distribution radius effect on the lung diffusing capacity.

It is concluded that the three-dimensional distribution of the red cells, characterized by
the distribution radius, has a fundamental impact on the lung diffusing capacity. This
conclusion indicates that the Roughton-Foster lung diffusing capacity model, used in
physiology and morphometric analysis, must be re-interpreted in light of the red cell
distribution effect within the alveolar region.
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