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Abstract. This work presents numerical simulations of the flow over the first Brazilian satellite
launch vehicle, VLS. The algorithm solves the thin-layer Navier-Stokes equations for
compressible flows using the Chimera technique. The computational code considers a finite
difference formulation and the time discretization uses an explicit method. The spatial
discretization uses a centered scheme in which the artificial dissipation terms are explicitly
added. Pressure coefficient results obtained in the present simulations are compared to
experimental data.
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1. INTRODUCTION

The overlapping multiblock grid technique, Chimera, became a practical method for
obtaining solutions in different types of problems. One can work with simple and complex
configurations, and with compressible (Rock & Habchi,1998) and incompressible flows (Chattot
& Wang, 1998). This technique allows the use of simple computational grids over each
component of the geometry in order to form a composite mesh which allows the discretization of
complex configurations.

The computational code developed in the context of the present work solves the 3-D thin-
layer Navier-Stokes equations, and it considers the formulation in the conservative form. The
Chimera technique is described in detail in Section 3. This technique typically discretizes each
component of a complex configuration with its own grid block. When all grid blocks are joined
together in order to create the composite mesh, clearly there will exist regions of overlap among
the various grid blocks. Hence, in order to create the final composite grid and to generate all the
geometric information necessary to actually run a Chimera simulation, two steps must be
considered: the hole cutting process and the interpolation process. The hole-cutting process



consists in the elimination of the points of one grid block which lie inside the components of
another grid block or the elimination of points in regions of excessive grid overlap. In the hole-
cutting process, the points in the hole, the hole boundary points and their neighboring points in the
other grid block are defined. These neighboring points are used in the interpolation process, since
the values of the properties of the hole boundary points are obtained by interpolation using exactly
the properties of this neighboring points in the other grid block. The interpolation process clearly
has to be performed at each time step of the overall solution  algorithm. However, all the weights
used in this process can be computed a priori and stored.  In its present version, the code uses
trilinear interpolation for the update of the properties along the hole boundary.

The purpose of this work is to study the issues which can appear in the actual implementation
for a truly complex configuration. The simulations to be considered here emphasize flow
calculations over the VLS. Since only zero angle-of-attack cases are considered in the present
work, the flow over the complete VLS vehicle will have a double symmetry. In this condition, one
can work with a simplified configuration of the VLS, treating only a quarter of the central body
and one booster. This saves computational time and, therefore, it is the solution adopted here.
Axisymmetric calculations were performed for the VLS central body configuration by Buonomo,
Strauss & Azevedo (1998), and a preliminary 2-D analysis with the Chimera technique for the
VLS at zero angle-of-attack is discussed in Yagua, Basso & Azevedo (1999). The present work
intends to extend the capability of computing VLS flows in order to include a 3-D viscous
formulation. The work considers supersonic flow conditions over the VLS and the present
numerical results are compared to experimental data.

2. THEORETICAL FORMULATION

The compressible thin-layer Navier-Stokes equations can be written in conservative form for
three dimensional, general curvilinear coordinates as
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where Re is the Reynolds number and Q̂  is the vector of conserved variables defined by
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and Ê , F̂  and Ĝ   are the inviscid flux vectors. These can be defined as
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The thin-layer viscous flux vector, Ŝ , can be represented as
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and only the thin-layer terms (Pulliam, 1980) have been included in the previous expressions.
The formulation assumes that η  is the wall-normal direction. The metric terms used and the
Jacobian are also defined in Yagua & Azevedo (1999). The contravariant velocity components
can be represented as

          wvuU zyxt ξξξξ +++= ,

          wvuV zyxt ηηηη +++= ,                                                                                                     (6)

          wvuW zyxt ζζζζ +++= .

The governing equations are discretized in a finite difference fashion. Space discretization uses
central differences together with explicit added artificial dissipation terms. Time march uses the
explicit Euler method, for simplicity of implementation at this point. The equations, after both
space and time discretization, can be written in operator form as

          ζηξ RRRQ n ++=∆ ˆ                                                                                                         (7)

The operators used in the Eq. (7) can be expressed by
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The Dξ, Dη and Dζ operators are 5-point, central difference operators in the ξ, η and ζ directions,
respectively. The artificial dissipation terms used, i.e., Dξ, Dη and Dζ are inspired on Pulliam’s
linear artificial dissipation operators (Pulliam, 1986). These use a 5-point stencil in order to
obtain 4th-difference dissipation operators. The actual form of the operators used in the present
work is



          ( ) n
E QJJtD 21

ξξξξ ψε ∆∇∆−= − ,

          ( ) n
E QJJtD 21

ηηηη ψε ∆∇∆−= − ,                                                                              (10)

          ( ) n
E QJJtD 21

ζζζζ ψε ∆∇∆−= − ,

where the ξψ , ηψ  and ζψ coefficients are defined as

zyx ξξξψξ ++= ,
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These coefficients were introduced by Benek, Buning and Steger (1985) in order to  improve the
convergence rate of the overall algorithm.

3. CHIMERA TECHNIQUE

       The Chimera technique can use many structured grids which are created independently.
Every grid is created for a specified part of a complex configuration and these are later joined
together in order to cover the complete geometry. Generally, this technique considers a main grid
about the overall configurations with smaller and simpler grids embedded in areas of interest.
Each grid is operated independently by the solver and they communicate through overlapped
boundary regions. This technique has two steps, the hole cutting process and the interpolation
process which are described subsequently.

3.1 Hole Cutting

One can observe that, after the independently created grids are joined together, many
overlapped regions appear. It is necessary to identify  which mesh is the main grid and which
meshes are the secondary grids. Afterwards, holes have to be created in the main grid in order to
accommodate for the secondary grids. Some overlapped regions also contain points inside some
of the other components of the geometry. These points have to be eliminated. The elimination of
the points is performed considering two arrays, iblanckm (i,j,k) and nfrontm (i,j,k), for every (i,j,k)
point and for each m-th block. One can assume as initial values iblanckm (i,j,k) = 1 and nfrontm

(i,j,k) = 0. The iblanckm (i,j,k) array informs  which points are inside or outside the hole, and
nfrontm (i,j,k) gives the information about the neighboring points.

The points which are considered inside the hole are the points which are inside the boundary
surface. This boundary surface could be defined through a flag variable jref . If jref = 1, the hole
will be created only for the geometry. With the purpose of obtaining a larger hole, the jref variable
will be greater than 1. If the (i,j,k) point is inside the hole then iblanckm (i,j,k) is zero. Otherwise,
it is one. If the (i,j,k) point is inside the geometry, the iblanckm (i,j,k) is also zero. The value of the
nfrontm (i,j,k) array is set to one, if the (i,j,k) point is a boundary surface point.

For every  point in which nfrontm (i,j,k)=1, it is necessary to look for and identify which
points in the other grid are neighboring points. At the end of this process, the boundary points



and the their respective neighboring points are identified and stored in a matrix to be used by the
interpolation procedure.

3.2 Interpolation

The communication between the grids is performed through interpolation of overlapped
boundary values from the grid which contained the overlapped region. This overlapped boundary
is the boundary of the hole in the main grid case and the external boundary for the secondary
grids. In the present approach, the secondary grids have all of their boundary points immersed in
the main grid. Hence, the properties for these points must be interpolated. In this process, one can
readily obtain the points which are in the overlapped boundary due to the hole cutting process,
since they have been already identified and stored.

The property values of the internal boundary points are obtained through interpolation of the
properties from the neighboring points in the other mesh. In this process, it is necessary to
calculate the distance between the hole boundary points and its neighboring points. The distance
information will be used as weighting factor in the actual interpolation formulas. In this work, the
implementation uses a trilinear interpolation. Hence, property values at the overlapped boundary
points are obtained by weighted averages which take into account the distance between the
boundary point and the neighboring points in the other meshes. Finally, when one has the
necessary information to calculate the properties in the overlapped region, it is possible to update
the properties in the boundary points with the current value of this information. The overlapped
boundary points do not enter in the solution algorithm. In the flow solver, one can consider

0),,(ˆ =∆ kjiQ  for every point which is inside the hole.

4 RESULTS

This section describes the physical problem, grid generation and the numerical results. It also
presents the comparison of these computational results with experimental data.

4.1 Physical Problem

The VLS vehicle consists of one central body and four boosters. The distance between the
booster and the central body is only about 10% of the diameter of the main body. The wall
boundary conditions are implemented considering the no slip condition. The Reynolds number
used here is 20 X 106 and the freestream Mach number is M∞ = 2.0. The simulations consider a
zero angle-of-attack case.

4.2    Grid Generation

As previously discussed, the complete configuration consists in one central body and four
boosters (Fig. 1). However, due to symmetry considerations for zero angle-of-attack flows, the
simulation can consider only one-quarter of the central body and one booster. Therefore, it is
possible to create a grid with only two blocks, i.e., a grid block for the central body and another
one for the booster. Both grids were created by an algebraic generator (Fletcher, 1990). The
central body grid has 80 points in the ξ direction, 40 points in the η direction and 13 points in the



ζ direction. Similarly, the booster grid was created considering 60 points in the ξ direction, 40
points in the η direction and 19 points in the ζ direction (Fig. 2).
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Figure 1- View of the complete VLS grid.
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Figure 2-View of the VLS central core grid and booster grids.

One can appreciated the overlapping region for this problem in Fig. 3. The points of the VLS grid
which are inside of the booster are eliminated. After the hole cutting process, one can obtain the
hole made in the VLS grid. Even though the hole cutting procedure was performed on different
central body grid planes, one can observed it in one of these planes in Fig. 4. The dark region
represents the hole in this figure.

4.3 Numerical Results

The results obtained with the thin-layer Navier-Stokes formulation are shown in Figs. 5-7.
One can observe pressure contours in the wall of the VLS central body and along the booster wall
in Fig. 5. Both configurations achieve the maximum pressure at the nose of bodies, as one should
expect. With the purpose of facilitating the visualization of the results, some figures show the
results in a plane of the VLS grid which is orthogonal to the booster configuration. The Mach
number contours are shown in Fig. 6. A strong shock is captured in the nose region. Much of the



detail of the aerodynamic features near the booster nose cannot be seen in Fig. 6. However, it is
clear from this figure that a strong, detached shock wave is also being captured by simulation.
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Figure 3-Overlapping region between VLS central body grid and booster grids.
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Figure 4-The VLS central body grid with the hole in one plane.
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Figure 5-Pressure contours along the VLS main body and booster walls for M∞ = 2 and ∝ =0 deg.



The velocity vector field near the booster nose can be seen in Fig. 7. This figure actually
shows two different results. The figure to the left, case (a), presents the velocity vectors when the
central body mesh has 80 points in the ξ direction. Similarly, the figure to the right, case (b), has
results for the velocity vector field when the central body grid has 100 points in the ξ direction.
All the other parameters are unchanged between the two calculations which are shown in Fig. 7.
Pressure contours in the field in the vicinity of the booster nose can be seen in Fig. 8. In this case,
the central body mesh with 100 points in the ξ direction is used for the computations.
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Figure 6-Mach number contours for a longitudinal plane including the central body and booster
for M∞ = 2 and ∝ =0 deg.
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Figure 7-Velocity vector field in the overlapping region. Central body grid has: (a) 80 x 40 x 13
points; (b) 100 x 40 x 13 points.

The comparison between numerical and experimental results is indicated in Fig. 9. In this
case, pressure coefficient distributions along the central body wall, for an azimuthal plane which
contains the booster axis, are presented for the two different computational grids previously
described. The left graph has the results for the case in which the central body grid has 80 x 40 x
13 points, whereas the right graph has the results for the 100 x 40 x 13 point grid. In both cases,
the booster grid has 60 x 19 x 17 points. Both comparisons indicate that the agreement in the
forward portions of the vehicle is very good. In the downstream portion of the vehicle, and



especially in the region in which there is a close interaction between central body and booster
flows, the agreement between computation and experiments is not as good. Nevertheless, one can
already observe a considerable improvement in the Cp correlation in the first booster bow shock
reflection region with the finer grid calculation. Therefore, at this point along the present
development effort, it is expected that further grid refinement in this interaction region would
further improve the correlation between computational and experimental results. It should be also
observed that the booster grid in the overlapped region is still finer than the fine central body grid
in the same region. Hence, this is another aspect that could be affecting the quality of the solution
in the interaction region.

x

y

19 20 21 22

0

1

2

3

p
3.680
3.456
3.232
3.007
2.783
2.559
2.335
2.110
1.886
1.662
1.438
1.213
0.989
0.765
0.541

Figure 8-Pressure contours in the overlapping region for the central body grid with 100 x 40 x 13
points.
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Figure 9 –Comparison of Cp between numerical and experimental results in the wall of the VLS
central body for M∞ = 2 and ∝ =0 deg. Central body grid has: (a) 80 points in the ξ direction;

(b)100 points in the ξ direction.

5 CONCLUSION

The paper presents 3-D compressible flow results for Chimera grid simulations over the first
Brazilian Satellite launcher. The 3-D code is an extension of previously validated 2-D solvers and



the present calculations seem to indicated that the extension process was adequately performed.
Furthermore, continuity of the contour lines in the overlapped regions are also an indication that
the trilinear interpolation process is adequate for the present purposes. Despite the coarse meshes
used in the present simulations, it is correct to state that the present 3-D thin-layer Navier-Stokes
calculations were able to qualitatively reproduce the expected flow features. A more detailed
quantitative validation of these results is presently being undertaken and it involves the use of
computational grids which are substantially finer than the ones here used, especially in the
afterbody regions. Furthermore, efforts in the implementation of a simple turbulence model are
also being performed, since these launch vehicle flows are clearly turbulent in actual flight. In the
present work, the effect of turbulent transport has been intentionally neglected, because the effort
should be seen as an evolutionary step towards the complete simulation capability.
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