

XVII Congresso Nacional de Estudantes de Engenharia Mecânica - 02 a 06/08/2010 - Viçosa - MG Paper CREEM2010-SF-20

DESENVOLVIMENTO DE UM INJETOR CENTRÍFUGO DUAL PARA BIOCOMBUSTÍVEIS LÍQUIDOS

Roger Apaza Vásquez, Tiago dos Santos Ramos e Fernando de Souza Costa

INPE, Instituto Nacional de Pesquisas Espaciais, Laboratorio Associado de Combustão e Propulsão CEP 36570-000 – Cachoeira Paulista – São Paulo E-mail para correspondência: roger@lcp.inpe.br, tiago@lcp.inpe.br, fernando@lcp.inpe.br

1. Introdução

A transformação de líquidos em nuvens de gotas (sprays) ou em atmosferas gasosas possui aplicações que vão desde a indústria até a medicina. Vários tipos de dispositivos têm sido desenvolvidos, os quais são denominados atomizadores, nebulizadores, injetores ou bocais.

O processo de atomização é aquele em que um jato, folha ou filme líquido é desintegrado pela energia cinética do próprio líquido, pela exposição a uma corrente de ar ou gás de alta velocidade ou, ainda, como resultado de energia mecânica externa aplicada através de dispositivos rotativos ou vibratórios. Devido à natureza aleatória do processo de atomização, o spray resultante é usualmente caracterizado por um largo espectro de tamanhos de gotas.

A combustão de combustíveis líquidos em motores diesel, motores a ignição por centelha, turbinas, motores foguete e fornalhas industriais são dependentes de uma atomização eficiente para aumentar a área superficial específica do combustível e atingir altas taxas de mistura e evaporação. Na maioria dos sistemas de combustão, a redução do diâmetro médio da gota leva a altas taxas volumétricas de liberação de calor, à facilidade de acendimento e a uma larga faixa de queima e baixa concentração de poluentes.

Existem vários processos básicos associados à maioria dos métodos de atomização. Por exemplo, o escoamento no interior do atomizador governa a turbulência no combustível líquido ejetado. O desenvolvimento do jato ou da lâmina de líquido na saída do injetor e o crescimento de pequenas perturbações conduzem à desintegração em ligamentos e depois em gotas. Estes fenômenos são de importância fundamental para a determinação da forma e da penetração do spray resultante, assim como do número, da velocidade e da distribuição do tamanho das gotas formadas. Todas estas características são bastante afetadas pela geometria interna do atomizador, pelas propriedades do meio gasoso e pelas propriedades físicas do líquido. Por exemplo, uma maior viscosidade do líquido inibe o crescimento de instabilidades hidrodinâmicas e atrasa o início da desintegração do jato líquido saindo do injetor. Na maioria dos casos, a turbulência no líquido, a cavitação no bocal e a interação aerodinâmica com o meio gasoso, que aumenta com a densidade do meio, contribuem para a atomização (Lefebvre, 1989).

Biocombustíveis são fabricados a partir de vegetais tais como milho, soja, cana de açúcar, mamona, canola, babaçu e cânhamo, dentre outros. O lixo orgânico também pode ser usado para a fabricação de biocombustível. Podem ser usados diretamente em câmaras de combustão ou misturados a combustíveis fósseis. Uma vantagem potencial do uso dos biocombustíveis é a redução significativa da emissão de gases poluentes. Os biocombustíveis são uma fonte de energia renovável ao contrário dos combustíveis fósseis como óleo diesel, gasolina querosene e carvão mineral.

2. Considerações teóricas e análise do projeto

2.1. Funcionamento de injetores centrífugos duais

Um injetor centrífugo dual (pressure swirl dual) tem duas câmaras de turbilhonamento separadas, uma para o conjunto primário e a outra para o conjunto secundário de orifícios. Ver figura 1. As duas câmaras são alinhadas concentricamente de forma que suas gargantas despejam o líquido em uma garganta comum. O atomizador centrífugo dual oferece maior flexibilidade do que um atomizador centrífugo do tipo duplo. Por exemplo, pode-se projetá-lo para que o spray primário e o spray secundário se fundam formando um spray único. Alternativamente pode ser projetado para que o spray primário e o secundário tenham ângulos de abertura diferentes, sendo o primeiro otimizado para baixas vazões e o segundo para altas vazões.

2.2.Desenvolvimento teórico

Apresenta-se a seguir um desenvolvimento teórico para projetar injetores centrífugos duais. Os subscritos *i* e *e* indicam o injetor interno e externo, respectivamente. A análise apresentada para a câmara primária baseia-se nos estudos realizados por Lefebvre (1989) e Ommi *et al.* (2008) para injetores centrífugos simples.

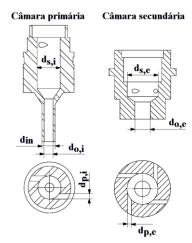


Figura 1 — Esquema de um injetor centrífugo dual.

3. Resultados

A Tabela 1 apresenta os dados utilizados para o projeto de um injetor centrífugo dual para atomização de biocombustíveis. Um algoritmo desenvolvido em linguagem Matlab foi utilizado para obter os resultados apresentados na Tabela 2.

Tabela 1 - Dados para o projeto do injetor dual.

Tue tra 1 2 au os para o projeto do injetor duar.			
Câmara	Interna	Externa	
Combustível	biodiesel	etanol	
Vazão mássica [kg/h]	70	150	
Diâmetro de saída do injetor [mm]	1,83	4,28	
Diâmetro da câmara de turbulência do injetor [mm]	4,77	8,50	
Diâmetro do furo de entrada tangencial do injetor [mm]	1	1	
Número de furos tangenciais	2	4	
Diâmetro externo do orifício da câmara interna [mm]	2,70		
Temperatura de operação [°C]	20		

Tabela 2 – Características do injetor dual.

The till 2 Children is the injector dual.			
Câmara	Interna	Externa	
Velocidade axial, Vaxial [m/s]	24,27	16,55	
Número de Reynolds, Re [-]	7729,41	18957,6	
Número de Weber, We [-]	37,62	23,57	
Dif. de Pressão, ΔP [bar]	11,76	6,72	
Ângulo de cone, θ [°]	62,18	66,37	
Coef. Descarga, C_D [-]	0,19	0,13	

4. Conclusões

Este trabalho apresentou o projeto de um injetor centrífugo dual para atomização de etanol e biodiesel visando aplicações em câmaras de combustão industriais. Os resultados apresentados foram obtidos através de um programa escrito em linguagem Matlab.

Referências Bibliográficas

Lefebvre, A. H., Atomization and sprays, McGraw-Hill, New York, NY, 1989.

Ommi, F., Hosseinalipour, S. M., Kargar, M. Movahed, E., Nekofar K., Experimental investigation of characteristics of a double-base swirl injector in a liquid rocket propellant engine, The pacific Journal of Science and Technology, Vol. 10, Num 1, May 2009.