

XVII Congresso Nacional de Estudantes de Engenharia Mecânica - 02 a 06/08/2010 - Viçosa - MG Paper CREEM2010-EM-03

MODELAGEM E SIMULAÇÃO DE SUSPENSÃO ATIVA EM TERRENOS ACIDENTADOS

Aline Elly Treml e Carlos H. F. dos Santos

UNIOESTE, Universidade Estadual do Oeste do Paraná, Curso de Engenharia Mecânica Grupo de Pesquisas em Robótica (GPR), Centro de Engenharia e Ciências Exatas- Parque Tecnológico Itaipu (PTI) -CEP 85856-970 – Foz do Iguaçu – Paraná

E-mail para correspondência: aline_elly@hotmail.com, chf.santos@uol.com.br

Introdução

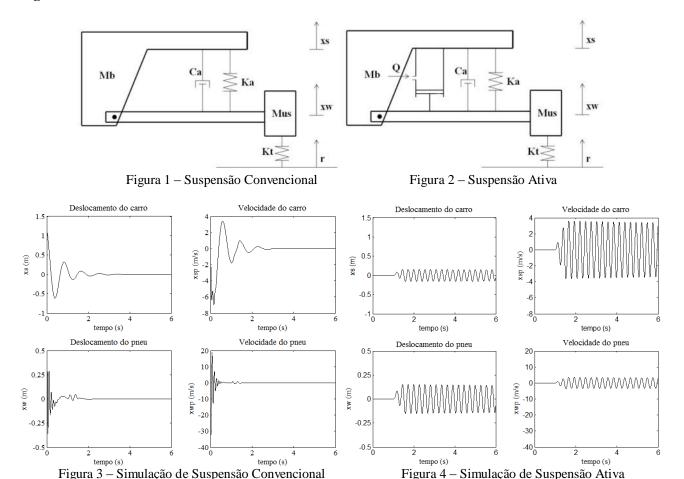
A pesquisa em robótica móvel está em plena difusão devido a sua ampla aplicabilidade em diversos campos de atuação, tais como: exploração planetária, operação em estruturas colapsadas e inspeção de áreas radioativas. Estas pesquisas têm o intuito de realizar tarefas evitando o risco de expor operadores humanos. Uma das pesquisas deste campo da robótica consiste no desenvolvimento de suspensões ativas aplicadas a veículos, tripulados ou não, que operam em terrenos acidentados (Lin, 1995). A irregularidade do terreno, a qual é freqüentemente desconhecida, provoca uma súbita mudança de estado do veículo robotizado em relação ao solo, podendo levar ao tombamento deste ou a perda de tração de alguma das rodas, o que pode ocasionar no fracasso da missão, caso este veículo seja não tripulado e esteja operando em local isolado.

Uma das soluções encontradas foi à utilização de uma suspensão ativa, capaz de controlar os distúrbios sofridos através de um sistema mecânico, composto de amortecedores, molas e um atuador hidráulico.

Objetivos

Modelar matematicamente e simular os casos de uma suspensão convencional e uma suspensão ativa de um veículo robotizado. As respostas transitórias destes casos são comparadas, onde destaca-se que a suspensão ativa considera o modelo linearizado do atuador hidráulico obtido em (Paim, 1997). Estas respostas permitirão observar a necessidade da aplicação de compensadores com o intuito de reduzir o sobresinal e atenuar as oscilações. Os resultados obtidos neste trabalho permitirão uma posterior análise detalhada do modelo não-linear sistema. Com estas etapas concluídas será feita uma comparação com os resultados já obtidos por pesquisadores nesta mesma área.

Metodologia


Um sistema de suspensão automotiva convencional, ilustrado na Fig. 1, é composto pela combinação de molas e amortecedores (Ogata, 2003), neste caso composto de duas molas com rigidez K_a e K_t e com coeficiente de amortecimento C_a . O modelo matemático deste sistema é representado pelos quatro primeiros equacionamentos da Eq. 1, ignorando o distúrbio r e a variável x_5 . Pode-se considerar que é um sistema auto-regulável pois entra em regime permanente mesmo sem a presença de um controlador.

No caso da suspensão ativa, ou seja, com a presença de um atuador hidráulico, Fig. 2, os distúrbios sofridos são rapidamente corrigidos, tendo uma melhor estabilidade devido à baixa porcentagem de sobresinal e um menor tempo de acomodação. O modelo matemático deste é representado pela Eq. 1.

Equações

$$\dot{x}_{1} = x_{2}
\dot{x}_{2} = -\frac{1}{M_{b}} (K_{a}(x_{1} - x_{3}) + C_{a}(x_{2} - x_{4}) - A * x_{5})
\dot{x}_{3} = x_{4}
\dot{x}_{4} = -\frac{1}{M_{us}} (K_{a}(x_{1} - x_{3}) + C_{a}(x_{2} - x_{4}) - K_{t}(x_{3} - r) - A * x_{5})
\dot{x}_{5} = -\beta * x_{5} - \alpha * A * (x_{2} - x_{4}) + \gamma * x_{6} * \sqrt{P_{s}} - K_{c} * x_{5}
\dot{x}_{6} = -\frac{1}{\tau} (-x_{6} + u)
r = \begin{cases} a * (1 - \cos * \pi * t) & \text{se } 0.5 \le t \le 0.75 \\ 0 & \text{outros} \end{cases}$$
(1)

Figuras

Resultados

Com a simulação da suspensão convencional obteve-se as respostas ilustradas na Fig. 3, e as respostas da suspensão ativa com um atuador hidráulico linearizado estão demonstradas na Fig. 4. Estas simulações exibem a necessidade da utilização de compensadores, com o objetivo de reduzir os efeitos de terrenos irregulares. Uma análise detalhada é exposta na seção seguinte.

Conclusão

A resposta transitória do caso com suspensão convencional mostra que o sistema é auto-regulável (estável), porém, um regulador pode usado para diminuir o sobresinal e do tempo de assentamento. Por outro lado, o caso da suspensão ativa expõe uma característica oscilatória do sistema, a qual pode inclusive tender para uma instabilidade. Neste último caso, o projeto de uma lei de controle associada ao deslocamento da servoválvula do atuador hidráulico é crucial para que o sistema obtenha um desempenho aceitável.

Agradecimentos

Este projeto foi apoiado pela Fundação Parque Tecnológico Itaipu – FPTI-BR e pela Unioeste Universidade Estadual do Oeste do Paraná.

Referências Bibliográficas

Khalil, H. K., "Nonlinear Systems", 3ª Ed., Editora Prentice Hall, Upper Saddle River, NJ, 2002.

Lin, J.S., Kanellakopoulos, I., "Nonlinear Design of Active Suspensions", Anais do 34° IEEE Conferencce on Decision and Control, pp. 3567-3569, New Orleans, LA, 1995.

Ogata, K., "Engenharia de Controle", 4ª Ed., Editora Prentice Hall, São Paulo, SP, 2003.

Paim, C.C., "Técnicas de controle aplicadas a um atuador hidráulico", Dissertação de Mestrado, USFC-Universidade Federal de Santa Catarina, Florianópolis-SC, pp.17-85, 1997.