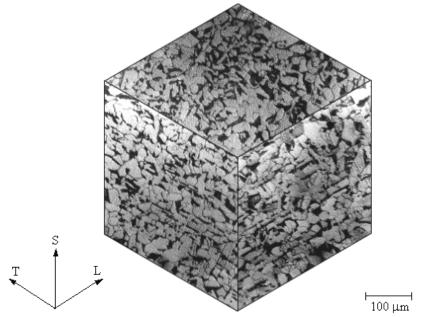


XIV CONGRESSO NACIONAL DE ESTUDANTES DE ENGENHARIA MECÂNICA

Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica

INFLUÊNCIA DOS CICLOS TÉRMICOS NAS PROPRIEDADES MECÂNICAS EM UMA JUNTA SOLDADA


Renan Augusto Perez, Antony Satoshi Hidehara, Ruís Camargo Tokimatsu

Universidade Estadual Paulista "Júlio de Mesquita Filho" Avenida Brasil, 56 – Centro – 15385-000 Ilha Solteira - SP renanper@aluno.feis.unesp.br

RESUMO

Para realizar este trabalho utilizou-se o aço COS Civil 300, e a partir dele foram feitos corposde-prova que foram submetidos a ciclos térmicos, sendo as variáveis de controle a temperatura de austenitização (880°C, 1000 °C, 1225°C) e tratamentos térmicos de têmpera, normalização e recozimento. As mudanças nos ciclos térmicos resultaram em diferentes microestruturas, e com isso diferentes propriedades mecânicas. Estas foram avaliadas a partir da análise microestrutural, dos ensaios mecânicos de tenacidade ao impacto e ensaio de dureza Vickers.

As características microestruturais do metal base foram analisadas em três planos metalográficos ortogonais entre si, decorrentes do processo de laminação. Os planos adotados foram: LT, TS, SL. A dessa análise metalográfica, no qual se consiste em um ataque químico com nital 2% e análise microscópica, verifica-se uma orientação preferencial na deformação dos grãos nas orientações TS e SL, como verifica-se no esquema 1. O trabalho mecânico ocorreu na orientação L, que coincide ao eixo principal do cordão-de-solda.

Esquema 1. Montagem tridimensional da textura microestrutural observada em três orientações L, S, T, do metal base COS Civil 300.

Para avaliar a influência dos ciclos térmicos no comportamento mecânico, realizou-se os ensaios de dureza e tenacidade ao impacto Charpy na temperatura ambiente. O valor médio da tenacidade ao impacto Charpy do corpo-de-prova extraído na condição de "como soldado" foi de 36J com desvio padrão de 6. Os resultados de dureza e tenacidade para os ciclos térmicos estão apresentados na forma de tabelas(Tabela 1, Tabela 2).

Tabela 1. Valores médios, das diferentes orientações adotadas, para dureza Vickers das três principais regiões da junta soldada na condição "como soldado".

	Região na Junta Soldada	Dureza Vickers [Kgf/mm ²]	Desvio Padrão
Condição - "como soldado"	M.B.*	144	6
	Z.A.T.*	158	9
	C.S.*	185	6

^{*} M.B. – Metal Base; Z.A.T. – Zona Afetada Termicamente; C.S. – Cordão de Solda.

Tabela 2. Valores médios, das diferentes orientações adotadas, para dureza Vickers e tenacidade Charpy do cordão de solda após realização dos tratamentos térmicos com resfriamento contínuo.

Tipo de tratamento	Temperatura de austenitização [°C]	Dureza Vickers [Kgf/mm²]	Energia Absorvida [J]
Têmpera (resfriamento em água)	1225	192*(3)	44*(2)
	1000	217*(3)	30*(3)
	880	197*(4)	31*(4)
Normalização (resfriamento ao ar)	1225	138*(1)	125*(14)
	1000	139*(2)	196*(28)
	880	139*(2)	135*(18)
Recozimento (resfriamento no forno)	1225	120*(2)	131*(4)
	1000	131*(2)	300*(1)
	880	135*(3)	152*(15)

^{*} Os valores entre parênteses correspondem ao desvio padrão.

Com a análise comparativa dos valores de tenacidade e dureza da condição de "como soldado" com os diferentes ciclos térmicos empregados, observamos uma diferença significativa de dureza e tenacidade ao impacto Charpy. Isto decorre da modificação da microestrutura resultante dos diferentes ciclos térmicos empregados. Com isso, evidencia-se a importância do estudo das microestruturas e a utilização dos ciclos térmicos nos processos de soldagem, para obter-se melhorias nas características das juntas soldadas.

REFERÊNCIAS

Vilchez, C.A.Z.; Influencia de Ciclos Térmicos na Microestrutura e Propriedades Mecânicas de Junta Soldada do Aço COC Civil 300 (2005). Dissertação (Mestrado) – Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira, 2005.