

XIV CONGRESSO NACIONAL DE ESTUDANTES DE ENGENHARIA MECÂNICA

Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica

DIAGNOSE DE FALHAS EM SISTEMAS DE TRÊS GRAUS DE LIBERDADE ATRAVÉS DOS OBSERVADORES DE ESTADO

Rômulo Miguel Zanella, Itamar Rodrigo Barros, Gilberto Pechoto de Melo.

UNESP, Faculdade de Engenharia de Ilha Solteira, Departamento de Engenharia Mecânica. Av. Brasil, 56, Bairro Centro, Caixa Postal 31 – CEP 15385-000 – Ilha Solteira, SP.

RESUMO

Em função de uma demanda cada vez maior das indústrias em manter seus equipamentos em funcionamento sem paradas repentinas, observa-se nos últimos tempos o desenvolvimento de novas técnicas de detecção e localização de falhas em sistemas mecânicos submetidos a carregamentos dinâmicos. Estes sistemas devem ser supervisionados, pois os distúrbios em operação normal podem causar uma deterioração da performance ou levar até mesmo a situações perigosas.

A técnica dos observadores de estado consiste em desenvolver um modelo para o sistema em análise e comparar a saída estimada com a saída medida. A diferença entre os dois sinais apresenta um resíduo, que é analisado posteriormente. A idéia é montar um banco de observadores para supervisionar o processo, onde cada observador é dedicado a um parâmetro físico deste sistema.

1. METODOLOGIA

Para um sistema observável, calcula-se inicialmente um observador global para a detecção de possíveis falhas ou irregularidades. E verificação de falhas em sensores, após haver descartado a existência de falhas nos parâmetros físicos do sistema através dos observadores robustos.

Quando o sistema está funcionando adequadamente sem indícios de falhas, o observador de estado global responde exatamente como o sistema real. O observador global é dado por um conjunto de equações diferenciais ordinárias e é desenvolvido utilizando-se as equações de Riccati.

Para descrição do observador, considera-se o seguinte sistema linear e invariante:

$$\{\dot{x}(t)\} = [A]\{x(t)\} + [B]\{u(t)\}; \{y(t)\} = [C_{me}]\{x(t)\} + [D]\{u(t)\}$$
(1)

Onde $[A] \in \mathbb{R}^{nxn}$, $[B] \in \mathbb{R}^{nxp}$, $[C_{me}] \in \mathbb{R}^{kxn}$, $[D] \in \mathbb{R}^{kxp}$ sendo n a ordem do sistema, p o número de entradas $\{u(t)\}$, e k o número de saídas de $\{y(t)\}$. O sistema é assumido como totalmente observável. O observador para este sistema é dado como:

$$\{ \overline{\dot{x}}(t) \} = [A] \{ \overline{x}(t) \} + [B] \{ u(t) \} + [L] \{ \{ y(t) \} - \overline{y}(t) \} ; \{ \overline{y}(t) \} = [C_{me}] \{ \overline{x}(t) \}$$
 (2)

onde [L] é a matriz do observador de estado, [B] é a matriz entrada e [A] a matriz dinâmica.

1.1. Resultados

O trabalho apresenta um sistema livre com três graus de liberdade, no qual a identificação é feita a partir de sinais de excitação e de resposta obtidos através de simulação computacional (MATLAB) para o cálculo dos observadores de estado e localização de falhas em sistemas.

Tabela 1 - Valores Numéricos do Sistema. O intervalo de tempo da simulação: $0 \le t \le 1s$

Valores Numéricos do Sistema Analisado:				
massa (kg)	rigidez (N/m)	amortecimento (Ns/m)	deslocamento (m)	velocidade (m/s)
m1 = 5	$k_1 = 600$	$c_1 = 20$	x1(0) = 0.025	$\dot{x}_1(0) = 2.0$
m2 = 5	$k_2 = 500$	$c_2 = 30$	x2(0) = -0.075	$\dot{x}_2(0) = 2.0$
m3 = 5	$k_3 = 400$	$c_3 = 40$	x3(0) = 0.0	$\dot{x}_3(0) = 0.0$

Resultados apresentados na forma de gráficos: comparação feita através dos resultados obtidos pelo sistema simulado sem falha e o observador global.

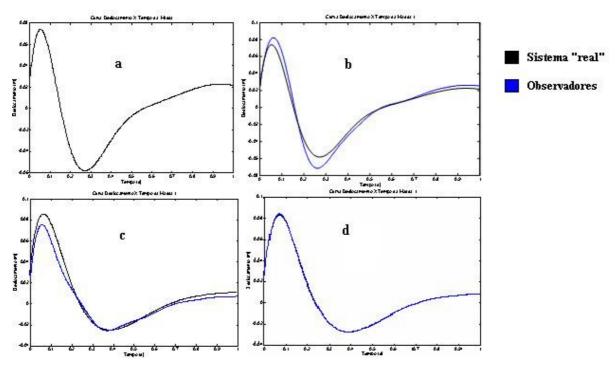


Figura 1 – (a) Sistema "real" simulado sem falha x obs. global; (b) Sistema "real" simulado sem falha x obs. robusto a k_1 , (c) Sistema "real" simulado com falha em k_1 x obs. global, (d) Sistema "real" simulado com falha em k_1 x obs. robusto a k_1 .

1.2. Conclusões

Na fig. 1.a, tem-se o sistema real sem falhas e a curva de resposta do observador global, neste caso ambas são coincidentes (sistema sem irregularidades). Na fig. 1.d, o mesmo ocorre, pois foi causada uma falha no sistema real, onde k_1 falho é o mesmo do observador robusto. Observou-se que quando é inserida uma falha no sistema real global, retirando-se um dos parâmetros, há uma separação da curva desta simulação com a gerada pelo observador global, comprovando a existência de uma falha.

2. REFERÊNCIAS

Inouye, Y. & Suga, Y., Indentification of Linear Systems with Noisy Input Using Input-Outuput Cumulants, International Journal of Control, Vo.59, n°.5, 1994.

Known, B. H. & Youn, M.J., Optimal Observers Using Time-Weighted Performance Index With Prespecified Engenvalues, Journal of Dynamic Systems, vol.108, 1980.

Luenberger, D. G., Observing the State of a Linear System, IEEE Transactions on Military Eletronics, Vol MIL-8, 1964.