

Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica

CARACTERIZAÇÃO DO METAL DE SOLDA OBTIDO COM ARAME SÓLIDO AWS E70S-6 EM FUNÇÃO DA ADIÇÃO DE CO₂ NO GÁS DE PROTEÇÃO

Alcindo Fernando Moreira Juliano Torteli de Godoi Zucato Juno Gallego Ruis Camargo Tokimatsu Wyser José Yamakami Vicente Afonso Ventrella ventrella@dem.feis.unesp.br

Faculdade de Engenharia de Ilha Solteira – FE/IS – UNESP Av. Brasil Centro – 56, CEP:15.385-000 Ilha Solteira – SP.

1. RESUMO

O presente trabalho visa a caracterização do metal de solda dos revestimentos internos de aço carbono, depositados através do processo de soldagem MIG/MAG sob diferentes atmosferas gasosas, para a recuperação de turbinas hidráulicas construídas com aço carbono estrutural tipo ASTM A-36 e sujeitas a desgaste cavitacional. Utilizou-se como gás de proteção Argônio puro, gás Carbônico puro e misturas binárias de Ar/CO₂ (98%Ar + 2%CO₂, 96%Ar + 4%CO₂, 92%Ar + 8%CO₂, 85%Ar + 15%CO₂ e 75%Ar + 25%CO₂ - gases comerciais). O consumível utilizado foi arame sólido do tipo AWS E70S-6 com 1,2 mm de diâmetro. Foi analisado o comportamento de parâmetros geométricos dos cordões de solda, tais como, altura, largura e profundidade, além das taxas de diluição e deposição, em função da variação da porcentagem de CO₂ no gás de proteção.

2. MATERIAIS E MÉTODOS

Como material de base utilizou-se chapas de aço carbono ASTM A-36, cortadas nas dimensões 15 x 75 x 150 mm. As chapas foram pesadas com uma precisão de 10^{-3} gramas antes de serem efetuados os cordões de solda. O processo de soldagem empregado para a realização dos experimentos foi o MIG/MAG, mecanizado através de uma tartaruga de oxicorte, juntamente com uma fonte inversora de soldagem (Invertec V300I) e utilizando-se o método "bead on plate". Como consumível foi utilizado arame sólido classificação AWS A 5.18 do tipo E70S-6 com 1,2 mm de diâmetro.

O tempo de soldagem foi monitorado através de um osciloscópio para cada gás empregado. A Figura 1 mostra uma representação esquemática da chapa soldada (*bead on plate*) e a nomenclatura utilizada para a geometria do cordão de solda.

Figura 1: Representação esquemática da soldagem "*bead on plate*": Largura do cordão (W), Profundidade do cordão (D) e Reforço do cordão (H).

3. RESULTADOS E DISCUSSÃO

A Tabela 1 apresenta os valores da taxa de deposição [kg/h], da taxa de diluição [%], bem como da profundidade [mm], altura [mm] e largura [mm] do cordão de solda para o arame AWS E70S-6 de acordo com a variação dos gases de proteção.

CDP	Gás de proteção	Taxa de deposição [kg/h]	Taxa de diluição [%]	D [mm]	H [mm]	W [mm]
1	Argônio (puro)	3,25	15,67	0,91	3,93	8,80
2	98%Ar+2% CO ₂	3,29	26,78	1,72	3,25	11,23
3	96%Ar+4% CO ₂	3,12	30,86	1,85	2,89	11,85
4	92%Ar+8% CO ₂	3,18	34,07	2,14	3,02	11,10
5	85%Ar+15% CO ₂	3,15	36,84	2,27	2,92	11,10
6	75%Ar+25% CO ₂	3,04	37,60	2,27	2,83	11,33
7	CO ₂ (puro)	3,22	36,60	2,27	3,38	10,23

Tabela 1: Valores da taxa de deposição, taxa de diluição e geometria do cordão.

4. CONCLUSÕES

Pelos resultados da Tabela 1 pode-se afirmar que:

- A taxa de deposição não foi significativamente afetada pelo tipo de gás de proteção utilizado.
- Com relação a taxa de diluição pode-se observar que tal grandeza aumentou significativamente até cerca de 15% CO₂, sendo que, para porcentagens maiores que esse valor, manteve-se praticamente constante. Tal fato pode ser função de aumentos substanciais nas temperaturas do arco e, consequentemente, da poça de fusão, gerados pela introdução de CO₂ até uma proporção de aproximadamente 15%.
- O comportamento dos parâmetros geométricos do cordão de solda pode ser explicado pela mesma linha de raciocínio utilizada no caso da taxa de diluição, uma vez que apresenta a mesma tendência da taxa de diluição.
- Aumento nas temperaturas do arco e da poça de fusão a elevados gradientes ocorreram até uma porcentagem de cerca de 4% CO₂.

6. REFERÊNCIAS

Wainer, E.; Brandi, S. D.; Mello, F. D. H, 1992, "Soldagem: processos e metalurgia", Edgard Blücher Ltda, São Paulo.

AWS – American Welding Society, 2004, "Welding Handbook", 9^a Ed., Miami.

- Lesnewich, A., 1958 Control of melting rate and metal transfer in gas-shielding metal-arc melting rate, "Journal of American Welding Society", p. 343-353.
- Suban, M.; Tušek, J., 2001 Dependence of melting rate in MIG/MAG welding on the type of shielding gas used, "Journal of Materials Processing Technology", v. 119, p. 185-192.
- Church, J.G; Imaizumi, H., 1990, T.I.M.E. Process, "IIW/IIS Doc XII-1199-90".