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Abstract. The aim of this work is to present a technique to identify elastic parameters of com-
posite materials. The identification is based on the adjustment of coefficients in a optimization
process in which the objective function is defined by the difference between the analytical natu-
ral frequencies and the measured ones. Such analytical natural frequencies are obtained by the
finite element method while the experimental ones are determined by ordinary modal tests. The
proposed technique is assessed by a number of different tests allows simultaneous identification
of several global properties from a single test without damaging the structure. The proposed ap-
proach uses genetic algorithm to solve the optimization problem. Since genetic algorithms are
not based on the gradient method, they do not require the expensive eigenvectors computations
presented in gradient method.
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1. INTRODUCTION

Recently, composite materials have been used in many structural applications. They are
formed by two or more different materials in order to obtain better engineering properties than
conventional ones, like stiffness, strength, weight reduction and thermal properties (Reddy,
1991). In the design of structures, it is of extreme importance to have very precise estimate
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of the elastic constants which conventional techniques are not fully able to do. In Balasub-
ramaniam at al (1998) the elastic constants were estimated using simulated ultrasonic phase
velocity. Genetic algorithms are used in Cunha et al (1999) as a complementary technique
to perform the initial estimation of the elastic parameters and then refining the solution by
classical updating methods. In the present work, the elastic constants are identified by an
optimization process, based on natural frequencies obtained by vibration tests. A genetic algo-
rithm (GA) was implemented for the inverse problem, which consists of determining the elastic
constants once experimental and analytical natural frequencies are known . The finite element
method was used to solve the eigenvalue equations. Because it is not based on the gradient
method, GAs do not require the expensive eigenvectors calculus which are used to compute the
gradient. Moreover, two other advantages are also obtained: no initial guess is required and
the optimization process could be more flexible, due to the fact that the search space begin
from a set of elastic constants, corresponding to different chromosomes, rather than a single
one. These characteristics are important to face on the local minimum problems. Due to these
features, the GAs seem to be more robust and global than other techniques (Haupt, 1998).

In this paper, the experimental natural frequencies were obtained by tests for an aluminium
plate (Bastos, 2001). In order to verify the capacity of the approach, simulated frequencies
for aluminium, kevlar/epoxy and SCS-6/Ti-15-3 which were obtained by numerical methods
were used. The stiffness properties of these materials were obtained from literature (Herakovich,
1998). In this manner, the estimated properties from GA were compared with the avaiable data.

2. CONSTITUTIVE EQUATION

This section introduces Hooke’s law, which describes a linear elastic material subjected to
small deformation (Eq.(1)), where ε is the strain vector and σ is the stress one (Reddy, 1991
and Herakovich, 1998).

σij = Cijkl εkl (1)

In principal material coordinates of an orthotropic material, the plane stress constitutive
equation has a simplified form:
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where E1 is the elastic modulus in the fibrous direction, E2 is the elastic modulus in the
transverse fibrous direction, ν12 and ν12 are the Poisson’s ratio and G12 is the shear modulus.
Only four out of the five material constant for plane stress of an orthotropic material are
independent. In this work, the identified constants are E1, E2, G12 and ν12. The Poisson’s ratio
ν21 is calculated by:

ν21 =
ν12 E2

E1

(4)



The classical plate theory was used in this work (Shames, 1973). In the finite element model,
the plate is discretized by triangular elements with three degrees of freedom per nodes, that
is two rotations and the transversal displacement. The eigenvalue equation to find the natural
frequencies is (Reddy, 1991):

(−ω2
i M + K) ui = 0 (5)

where ωi is the ith natural frequency and ui is the respective vibration mode. M and K are,
respectively, the inertia and stiffness matrix of the finite element model.

3. GENETIC ALGORITHM

Genetic algorithms are search algorithms based on the mechanics of natural selection. This
technique allows a population composed of many individuals to evolve according to some rules
to a state that minimizes a cost function. Comparing with other random search techniques,
the GA’s are an intelligent way to find the global solution in the search space. These methods
should be classified in some categories, analyzing some aspects such as (Haupt, 1998):

• multiple or single parameter;

• discrete or continuous;

• constrained and unconstrained;

In GA’s, a finite number of candidate solution, the chromosomes, are randomly created
forming the initial population. In this work, a binary code was used (Goldberg, 1998). Each
chromosome represents a possible solution, divided in sub-strings that are decoded into their
corresponding elastic constants. Those chromosomes will create the new generation, by natural
selection and reproduction procedures. As the cost function has to be minimized, only a few
of the best chromosomes (the members with lower errors) will be kept for breeding.

The natural selection is a procedure that decides which individual should survive, forming
the mating pool. Individuals with lowest cost reproduces more often than highest cost ones.
An overlapping population is permitted. In this case, the offsprings will replace the discarded
chromosomes . Reproduction procedures consist in crossover and mutation. Two chromosomes,
parent1 and parent2, are selected from the mating pool to produce two new offsprings, child1

and child2. A crossover point is randomly selected between the first and last bit of the parents,
exchanging portions of their strings, in order to form the children. This operation is performed
with a probability pcross, that is normally a high value. Mutation operation change a bit from
“1” to “0” or vice versa, with a probability pmutation, normally a very low value. Increasing the
number of mutations increases the algorithm’s search outside the current region of parameter
space. It also tends to distract the algorithm from converging on a solution. In order to
propagate the best solution unchanged it is usual in GA to keep the fittest chromosome without
mutation.

After that, the cost of the new generation is calculated and the described process is repeated,
until a stopping criterion. The number of generations depend on whether an acceptable solution
is reached or a number of iterations is exceeded. Figure (1) shows the present work’s procedures.

In order to represent the four elastic constants(in MPa), a chromosome with 40 bits was
used: 16 bits for E1 and 8 bits for the others. Therefore, the search space for each constant is
defined as:



Selecting the parameters, cromossome’s length and 
cost function

Random generation of new population

Evaluate cost

Select mates

Crossover

Mutation

Test convergence

STOP

Figure 1: Flow chart

0 < E1 < 256 0 <
E2

E1

< 1

0 <
G12

E1

< 1 0 < ν12 < 0.5 (7)

If the elastic modulus were greater than 256 MPa, the length of the chromosome should be
increased, enlarging the range of the search space.

In the optimization problem, the objective function is defined by the difference between
natural frequencies and calculated ones (Bledzki et al, 1999), stated as follows:

CF (θ) =
N∑

i=1

[
(f 2

exp − f(θ)2)2

f 4
exp

]
(8)

where N is the number of modes and θ is a vector where each component is an elastic constants
. After evaluating the fitness, the chromosomes are ranked from lowest to highest cost. Only
the nbest chromosomes are kept to form the mating pool, while the others are discarded.
If overlapping occurs, the new generations will be composed by the keep chromosomes and
completed by the offsprings created by crossover and mutation operations.

Parameters’ selection is different for each example. Small population size (popsize) should
lead to premature convergence while a large one is commonly used to increase the variation
within a population. However, the increase of the number of function evaluations results in
increased computational cost.



4. RESULTS

The proposed approach is assessed by means of a number of applications. Both, isotropic
and orthotropic plates are explored. The former, although it does not constitutes a composite
structure, is used as far as it represents a test for the algorithm in which the detection of flaws
is simple. The samples were hung upon two threads in order to simulate free-free boundary
conditions.

The elastic constants were identified for each specimen using the data from Tab.(1).

Table 1: Parameters of the plate

Sample a(m) b(m) h(m) ρ(Kg/m3)
Aluminium 0.6 0.4 0.0063 2700

Kevlar/Epoxy 0.6 0.4 0.004 1380
SCS-6 0.6 0.4 0.004 3860

4.1. Isotropic Material

In order to enlarge the number of situations that were analyzed, some non-experimental
quantities were utilized. They will be referred to as simulated frequencies, which are obtained
with an a priori choice of the elastic parameters and the use of a finite element model of the
plate. The simulated and experimental natural frequencies are shown in Tab.(2) and Fig.(2).
These two examples are represented by GAs and GAe, where the first case was calculated from
the simulated frequencies and the second one was calculated from the experimental ones. The
experimental frequencies were taken from (Bastos, 2001). In Tab.(3)-(4), the literature values
of the elastic constants are placed in the second column. Those values were used to obtain the
simulated frequencies.

Genetic Algorithm Parameters:
popsize = 80
keep = 10
nbest = 40
pcross = 0.95
pmutation = 0.03
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Figure 2: Frequencies on aluminium plate



Table 2: Aluminum plate frequencies in Hz

Modes Simulated GAs Experimental GAe

1 88.15 87.98 84.7 83.3049
2 93.26 93.2871 92.8 93.3378
3 204.73 204.565 195.7 197.141
4 216.05 216.061 215.9 217.076
5 247.66 247.486 246.2 244.686
6 287.20 287.576 288.5 286.82
7 377.27 377.338 359.1 369.781
8 427.97 427.75 415.6 415.814
9 498.86 499.814 512.5 502.916
10 574.30 574.218 577.0 572.796
11 630.31 631.078 623.5 625.124

Table (3) and Tab.(4) show the estimated elastic constants calculated by simulated and
experimental frequencies respectively. Different tests were done and the results are represented
in the columns 3,4,5,6 for GAs and in columns 3,4,5 for GAe. The mean value (µ) and the
standard deviation (s) were calculated for the values obtained in these tests. In GAe it is
possible to note that the elasticity modulus are better estimated than the shear modulus and
the Poisson’s ratio (Fig. (2)). It is clear that the value of shear modulus estimated by GAs

is better than the one estimated by GAe. This result was already expected inasmuch as the
experimental data contain the corrupting effects of noise, filtering, analogue to digital conversion
and etc.

In Tab.(5), the results obtained by genetic algorithm are compared with the results obtained
from the least-squares method in (Bastos, 2001). In the reference, the sample under considera-
tion was modeled as an isotropic plate thus only the elasticity modulus and the Poisson’s ratio
were calculated.

Table 3: Estimated elastic constants for an aluminium plate - GAs

Literature 1 2 3 4 µ s
E1 (GPa) 73 72.9804 73.2343 73.0156 74.1562 73.3466 0.22
E2 (GPa) 73 72.6953 72.6621 72.7303 73.2872 72.8437 0.066
G12 (GPa) 28.0769 28.2228 28.0349 27.9512 27.5188 27.9319 0.066

ν12 0.3 0.3027 0.2988 0.3066 0.2968 0.3012 1.4 · 10−5

ν21 0.3 0.3015 0.2964 0.3054 0.2933 0.2991 2.1 · 10−5

4.2. Orthotropic Material

In this example, the plate thickness is shown in Tab. (1) and the thickness of each plie is
h = 0.001m.



Table 4: Estimated elastic constants for an aluminium plate - GAe

Literature 1 2 3 µ s
E1 (GPa) 73 73.5546 73.0156 73.0156 73.1953 0.064
E2 (GPa) 73 72.1180 72.4451 72.4451 72.3361 0.023
G12 (GPa) 28.0769 24.7097 24.8138 24.8138 24.7791 0.0024

ν12 0.3 0.3339 0.33 0.33 0.3313 3.38 · 10−6

ν21 0.3 0.3274 0.3274 0.3274 0.3274 0.0

Table 5: Comparison between GA and least-squares method

Literature Estimated elastic constants Reference
E1 (GPa) 73 73.1953 68.7517
E2 (GPa) 73 72.3361 68.7517
G12 (GPa) 28.0769 24.7097 26.2616

ν12 0.3 0.3313 0.3090
ν21 0.3 0.3274 0.3090

4.2.1. Kevlar/Epoxy

The simulated and estimated natural frequencies are shown in Fig.(3). It is possible to
verify, in the cost function graphic, that the algorithm escaped from a local minimum, looking
for the global one. The estimated elastic constants obtained by GA are in good agreement with
the literature values (Tab.(6)).
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Figure 3: Cost function and frequencies on a Kevlar/Epoxy plate



Table 6: Estimated elastic constants for Kevlar/Epoxy

Literature 1 2 µ s
E1 (GPa) 76.8 77.08 77.09 77.085 0.25 · 10−4

E2 (GPa) 5.5 5.42 5.42 5.42 0.0
G12 (GPa) 2.07 2.1 2.1 2.1 0.0

ν12 0.34 0.339 0.333 0.336 9 · 10−6

ν21 0.024 0.0238 0.0234 0.0236 4 · 10−8

4.2.2. SCS-6/Ti-15-3

The simulated and estimated natural frequencies are shown in Fig.(4). As well as in the
Kevlar/Epoxy example, the algorithm escaped a local minimum.

In Table 6, the estimated elastic constants are compared to the values of literature. Although
the standard deviation has presented high values, the estimated mean values were very close
to literature ones (Tab.(7)).
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Figure 4: Cost function and frequencies on a SCS-6/Ti-15-3 plate

Table 7: Estimated elastic constants for SCS-6/Ti-15-3

Literature 1 2 3 4 µ s
E1 (GPa) 221 224 216.69 220.28 224 221.243 9.21
E2 (GPa) 145 146.1 143.05 144.55 145.24 144.735 1.24
G12 (GPa) 53.2 53.37 54.17 53.34 53.37 53.562 0.123

ν12 0.27 0.24 0.294 0.27 0.25 0.263 4 · 10−4

ν21 0.17 0.16 0.194 0.18 0.162 0.174 1.9 · 10−4



5. CONCLUSIONS

The proposed method for the identification of elastic constants has shown be effective for
the examples that have been presented here. It is clear from the examples that the algorithm
was able to skip local minimuns, i.e., it can be considered an efficient method to find the global
minimum for the problem under study. It should be remarked that the experimental data are
obtained out of non-destructive dynamics tests, the designer can perform several experiments
considering the same composite structure.
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