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Abstract. In this paper a nonlinear electro-mechanical system, which is based on the lever 
principle, is modeled by Lagrange’s method. The propose of this system is to improve vibration 
suppression between a payload and a base-plate. The nonlinear model is analyzed and a linear 
representation for the model is obtained around an equilibrium point. The linear model is used to 
investigate both, dynamics and closed loop control characteristics. A controller is designed using 
the linear model. Digital simulations are used to compare the nonlinear and the linear models. It is 
shown that, in general, controller designed using the linear model information cannot guarantee 
adequate performance when required to control the nonlinear system without a subsequent stage of 
fine tuning.  
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1. INTRODUCTION 

 
The active control of vibration is an important issue in engineering. Reducing mechanical 

vibration may improve the user’s comfort and safety, increase the product reliability and durability 
by reducing wear and can increase precision of pointing devices such as cameras in mobile robots. 
Nowadays, applications of active control of vibrations range from home appliances and automobiles 
to spacecrafts and nuclear power plant (Campbell and Crawley, 1994, Zhou et al., 1995, Denoyer 
and Kwak, 1996, Bai and Lim, 1996). 

Several techniques have been used to control vibration. These techniques can be classified in 
two categories: passive and active. Active vibration control techniques serve as promising 
alternatives to conventional passive methods (Soong, 1990). The choice of the approach to be used 
in active control of vibration, basically, depends of the characteristics of the system to be controlled, 
of performance desired and of available tools.  

Moreover, many control techniques were developed with base in linear analysis tools, and work 
properly with linear systems. The difficult obtaining models of nonlinear systems and working with 
them cannot be overlooked. A very popular way is to work with a linearized model, since there are 
numerous methods of analysis and several approaches to control design. Model building is the 
design phase where it is usually need to spend much of the time. The model is required to represent 
the system in a parsimonious manner. A model can be described as a useful representation of the 
characteristics of a plant. A model that represents with a high level of detail the desired 
characteristics of a plant can be considered as a model with good accuracy. However, many 
difficulties are intrinsic to the modeling task; for example, a model with a high level of detail, 
which presents a good accuracy, may not be a valuable representation of the system. Models that 
consider some simplifications, such as representing springs as a linear element and dampers as ideal 
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Coulomb frictional dissipator, may be less complex and even so they can be a good description of 
the system. Artificial intelligence (AI) approaches, such as fuzzy logic and neural networks, have 
been presented as an alternative form to work with this kind of problem (Sandri, 1999; Driankov 
et.al., 1993; Lee, 1990; Castro, 1995; Guerra et.al., 1997; Chiu and Chand, 1994; Karr and Gentry, 
1993). 

This paper has two main objectives. The first one is to construct a detailed nonlinear model that 
represents the proposed physical system and then, obtain a linear model by using Taylor’s series 
expansion and this is shown in section 2. In section 3, the linear model is used to analyze the 
dynamical behavior and the control characteristics of the system. The second important objective of 
this work is to analyze the application of different techniques of control design applied in the linear 
model to obtain a controller that will be used to control the nonlinear system. Section 4 shows the 
results an artificial intelligence based fuzzy logic controller which was based in the design 
presented by Araújo et.al., 2001. These controllers are used also with the linear model as well as 
with the nonlinear model and the results are compared and analyzed in the section 5. Lastly, in the 
section 6 the conclusions of this part of the research are presented and two ways to continue this 
work are suggested. 

 
2. THE ELECTRO-MECHANICAL SYSTEM 
 

The electro-mechanical system (Araújo and Yoneyama, 2001a; Araújo and Yoneyama 2001b, 
Araújo and Yoneyama, 2001c) consists of a lever supported in two points. The main support has a 
DC servo-actuator, a spring and a damper and the second support is passive, consisting just of a 
spring and a damper. The lever is assumed to have a payload on the non-supported extremity and a 
contra-balance mass in the other extremity (see figure 1). 
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Figure 1. Physical model of the electro-mechanical system. 
 

where: l = 5m, mA = 100 kg, mB = 30 kg, mC = 100 kg, mm = 6 kg, kA = 1x103 N/m, cA = 1x102 
N.s/m, kB = 2x104 N/m, cB = 2x103 N.s/m, lm = 0,2m, ls = 1m, La = 1,22 mH e Ra = 0,13 Ω. 

 

The objective is to reduce the transmission of vibrations between the base-plate and the payload. 
This is achieved by using the DC servo-actuator in such a way as to produce displacements that 
oppose the effects of the undesirable disturbances. 
 
2.1. Nonlinear System Modeling 
 

A central idea involved in the study of dynamics of real systems is the idea of a model of the 
system, which is simplified, abstracted constructs used to predict and analyze the system’s behavior. 
There are many types of models, and many approaches can be used in order to obtain each type of 
model. In this paper a mathematical model is obtained by Lagrange’s equation approach (Karnopp 



et.al., 2000; Wellstead, 1973; Thomsom and Dahleh, 1998), where the generalized coordinates 
chosen were; q1 = x and q2 = θ. 

The Lagrange’s equation is given by: 
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Since the effects of the displacements xu and d are already included into the Lagrangian and co-

content, the terms Fi represent only the gravity’s effects in the system and they are given by: 
 

1 A A B BF k k mgδ δ= + − ; and ( )gmmlF CA −= 22                               (2) 
 

where, δA and δB are the static deformation of the springs in the supports, m = mA + mB + mC + mm is 
the total mass of the system and g is the gravity’s acceleration. Then, it is possible to represent the 
system by the two following differential equations: 
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Finally, the nonlinear model of the system can be written in the following form: 
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2.2. Linearization 
 

In order to obtain a linear model for this system the eq. (12) was expanded in a Taylor’s series 
and cutting off the higher order terms in the resulting series, the following linear model was 
obtained: 
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Using the Laplace’s Transform in the eq.(14), after some manipulations, a matrix of transfer 

functions (G(s)) is obtained between the system’s output (Y(s) = XC(s)) and the system’s inputs 
(XU(s) and D(s)). 
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With the polynomials γij given in term of the elements of the matrices A and B in eq.(14). 
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2.3. The Servo-Actuator 
 

The DC servo-actuator aforementioned consists of a DC servomotor coupled with a spindle. 
Models for the DC servomotor can be easily found in the area’s bibliography (Ogata, 1993; Kuo 
1995). In this work the model used is: 
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where: Km � 12,77 and Tm � 0,04. 

The spindle only converts the rotational motion of the DC servomotor (θm(t)) to the 
translational motion xu(t) by a factor given by LP = 0,01. 

 
3. ANALIZING THE LINEAR MODEL 
 
3.1. Dynamic Characteristics 

 
An N-DOF (N-Deegre of Freedon) system has N natural frequencies, and for each natural 

frequencies there corresponds a natural state of vibration with a displacement configuration known 
as the normal mode. Mathematical terms related to these quantities are known as eigenvalues and 
eigenvectors. Normal modes of vibrations are free undamped vibrations that depend only on the 
mass and stiffness of the system and how they are distributed. When vibrating at one of these 
normal modes, all points in the system undergo simple harmonic motion that passes through their 
equilibrium positions simultaneously. Several authors have wrote about the importance of doing a 
dynamic analysis of the systems and they have proposed methods to do this analysis (Thomson and 
Dahleh, 1998; Timoshenko and Young, 1948; Timoshenko et.al. 1974; and Meirovitch, 1967, 
1990). This work follows the same steps followed in Thomson and Dahleh (1998), where the 
undamped free vibratiom equation is given in the following form: 
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where M and K are the matrices of mass and shiftness of the system and they are obtained from the 
eqs.(3) and (4).  

Such harmonic motion can be described by: [ ] [ ]T T
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eq.(18), we have: 
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From eq.(19), two expression for the ratio of amplitudes are found, and by substituting the 

natural frequencies in either of these equations leads to the ratio of amplitudes. It is important to be 
noticed that this ratio equations enables us to find only the ratio of the amplitudes and not their 
absolute values, which are arbitrary. If one of the amplitudes is chosen equal to 1, one can say that 
the ratio is normalized to 1. The normalized amplitude ratio is then called the normal mode. The 
natural frequencies and their respective normal modes evaluated to this system were: 
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3.2. Control Characteristics 

 
The analysis of characteristics like controllability, observability and stability is a very important 

task into control design. After obtaining a system model and analyze its dynamic, often the control 
designer need to change the dynamic behavior of this system to satisfies some specifications, which 
are called performance specifications, like speed, comfort, safety and reliability, for example. In 
order to decide the best way to satisfies these specifications the designer need to know the 



characteristics of controllability, observabilty and stability of the system to be controlled. Also after 
the system have been controlled it is important to analyze the stability of the controlled system. 

 
Theorem 3.1: For the linear time invariant (LTI) system given by eq.(14) to be completely 

controllable, it is necessary and sufficient that the following n x nr controllability matrix has a rank 

of n: 1n− =  M B AB A BK . Where ζ(t) = x(t) is the n x 1 state vector, ν(t) = u(t)  is the r x 1 

input vector, and y(t) is the p x 1 output vector.  
In the present system, and with the values showed after the figure 1, we have that n = 7, r = 2 e 

p = 1 and the rank of the controllability matrix is 7. Therefore, the system is completely 
controllable. 

With respect to the concept of observability, essentially, a system is completely observable if 
every state variable of the system affects some of the outputs. In other words, it is possible to 
obtain information of all state variables from the measurements of the outputs and the inputs. If any 
one of the states cannot be observed from the measurements of the system is said to be not 
completely observable or simply unobservable ( Kuo, 1995). 

 
Theorem 3.2: For the LTI system given by eq.(14) to be completely observable, it is necessary 

and sufficient that the following n x n.p observability matrix has a rank of n: 
T1n− = V C CA CAK . 

The rank of the observability matrix to the system described by eq.(14) is 6. Therefore, the 
system is completely observable in this description. In a practical sense one can see, by a brief 
analyze, that the measurement of the disturbances d can be very important to the observability of 
the system. Fortunately, in the model given by eq.(14) d is taken as the seventh state, consequently 
measure this variable consist in have two outputs to the system. Then, the matrix C given in eq.(15) 
need to be substituted by: 
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The rank of the observability matrix to the system with this new output matrix is 7. Thus, this 

system is completely observable. In a practical sense this result state that a model completely 
observable to the proposed physical system needs to measure not only the desired output (xC) but 
also the disturbance injected in the system through the base-plate. 

In order to analyze the stability of the non-controlled LTI system, it can be taken the frequency 
domain model, given by eq.(16), in closed loop. Then, the closed-loop between XU(s) and XC(s) 
(with D(s) = 0) and between D(s) and XC(s) (with XU(s) = 0) are given by: 

 
( ) ( )

( ) ( ))(1Num)(Den

)(1Den.)(Num

)(1

)(
)(

sGsG

sGsG

sG

sG
sG

UU

UU

U

U

u
xx

xx

x

xMF
x +

+
=

+
=                                            (20) 

 

( ) ( )
( ) ( ))(1Num)(Den

)(1Den.)(Num

)(1

)(

)(

)(
)(1

)(
)(

sGsG

sGsG

sG

sG

sG

sG
sG

sG
sG

U

U

UU xD

xD

x

D

D

x
D

DMF
D +

+
=

+
=









+

=                  (21) 

 
It is clear that if the roots of the polynomial in the denominator of each eq.(20) and (21) are all 

in the left half s-plane the system will be stable with respect to the two inputs. It correspond to the 
real part of these roots are negative. Using the already cited data for this system we could conclude 
that it is stable in both situations. 

 



4. CONTROLLING THE SYSTEM 
 
According to Ogata (1997), linear models obtained by linearizing nonlinear system’s models 

are important in analysis and control design of real nonlinear system. It is possible to apply 
numerous linear analysis methods that will produce information on the behavior of nonlinear 
system. This idea has been vastly used in process of analysis and control design. The second aim of 
this paper is to analyze the performance of a controller that was designed for the linear model, 
when they are working to control the nonlinear system. 

A nonlinear fuzzy controller was adjusted with base on the fuzzy system proposed by Araújo 
et.al. (2001). This fuzzy system is a Takagi-Sugeno-Kang (TSK) model that has as inputs the 
tracking error signal and its derivative and the output is the control signal to be injected in the 
servo-actuator. Araújo et.al. (2001) present a procedure to design fuzzy controllers type TSK 
whose the inputs are the tracking error and its derivative, based in the relations between this 
structure of fuzzy controllers and PD controllers. Based in the fact that TSK first order controllers, 
with n-1 inputs, given outputs such as [ ][ ]1. 121121 −− nnn InputInputInputCCCC KK , they 
show if the inputs are the tracking error and its derivative the constants C1 and C2 could be 
interpreted as a proportional gain and a derivative gain respectively, and C3 will represent a offset 
in the generated control surface. Then, this procedure (Araújo et.al., 2001) shows that a TSK fuzzy 
controller can be designed in order to reproduce the control action of numerous PD controllers and 
combinations of these action. Likewise, by adding some zero order TSK function the designer can 
impose saturations to the controller output in order to not saturate the actuators. 

Designs of controllers are not an aim of this paper, for that, a simplified version of the TSK 
fuzzy controller proposed by Araújo et.al. (2001) is used in this work. The inputs membership 
functions used in the simulations here showed were the same used by Araújo et.al. (2001), however 
for the Sugeno functions on output, two different adjustments were used (Table 1). The first one 
(Adjustment-1) was turned only based on the linear model response and the other (Adjustment-2) 
was turned whit base on the nonlinear model response. 
 
Table 1. The Sugeno output functions for the adjustment-1, with base on the linear model response, 

and adjustment-2 with base on the nonlinear model response. 
 

ADJUSTMENT-1 ADJUSTMENT-2 
Function Name Function Type Parameters Function Name Function Type Parameters 

SatP zero order 12 SatP zero order 12 
SatN zero order -12 SatN zero order -12 

Linear first order [10 -4.9 0] Linear first order [6 -2 0] 
 
5. ANALYSIS 

 
 The systems given by eqs.(12) and (14) while using the controller with the adjustment-1, 

whose the parameters of the are showed in Table (1), presented the following responses: 
 

0 5 1 0 1 5 2 0
-0 .2

-0 .1

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Tim e  [ s ]

A
m

p
li

tu
d

e
 [

m
]

T im e  R e s p o n s e

D is t u rbanc e  - d´    
R e fe r e n c e  S igna l  -  r
N o n l i n e a r  R e s p o n s e   
L i n e a r  R e s p o n s e      

 
0 5 1 0 1 5 2 0

-15

-10

-5

0

5

1 0

1 5

Tim e  [ s ]

C
o

n
tr

o
l 

s
ig

n
a

l 
[v

]

C o n t ro l  S i g n a l

N o n l inear  S y s t e m
L inea r  S y s t e m    



0 5 1 0 1 5 2 0
-0 .4

-0 .3

-0 .2

-0 .1

0

0 . 1

0 . 2

0 . 3

Tim e  [ s ]

A
m

p
li

tu
d

e
 [

m
]

T im e  R e s p o n s e

D is t u rbanc e  - d´    
R e fe r e n c e  S igna l  -  r
N o n l i n e a r  R e s p o n s e   
L i n e a r  R e s p o n s e      

 
0 5 1 0 1 5 2 0

-15

-10

-5

0

5

1 0

1 5

Tim e  [ s ]

C
o

n
tr

o
l 

s
ig

n
a

l 
[v

]

C o n t ro l  S i g n a l

N o n l inear  S y s t e m
L inea r  S y s t e m    

 
Figure 2. (a) Comparing nonlinear and linear systems response for a step reference, with the fuzzy 

controller. (b) Comparing nonlinear and linear systems signal control generated by the 
fuzzy controller to tracking a step. (c) Comparing nonlinear and linear systems response 
to a disturbance (d’(t)) type step, with the fuzzy controller. (d) Comparing nonlinear and 

linear systems signal control generated by the fuzzy controller to reject a step. 
 
Now, this same systems using the controller with the adjustment-2 whose the parameters are 

too showed in Table (1), presented the following responses: 
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Figure 3. (a) Comparing nonlinear and linear systems response for a step reference, with the fuzzy 

controller. (b) Comparing nonlinear and linear systems signal control generated by the 
fuzzy controller to tracking a step. (c). Comparing nonlinear and linear systems response 
to a disturbance (d’(t)) type step, with the fuzzy controller (d) Comparing nonlinear and 

linear systems signal control generated by the fuzzy controller to reject a step. 
 
Figures 2a-2d show that the controller turned with base on the linear model behavior does not 

work properly with the nonlinear system. It is probable that this occurs frequently in presence of 
significant nonlinearities or when the controller is not so robust with respect to the differences 
between the linear and the nonlinear models. 



Figures 3a-3d show that it is possible to tune the controller to work properly with the nonlinear 
model, although one have a significant decrease on the performance of the linear model. Since the 
aim is to control the nonlinear system, and the linear model is used because it is simpler to 
manipulate, it is not important if the final controller does not work properly with the linear model. 
An important result shown by the fig. 3 is the fact that a controller designed with base on the linear 
model’s information, which at first does not work properly with the nonlinear model, can be made 
to work properly with this nonlinear model. 

 
6. CONCLUSIONS 

 
As a contribution of this paper, a detailed nonlinear model was constructed for the proposed 

physical system. By Taylor’s series expansion this model was linearized. The linear model was used 
in analyzing dynamics and control characteristics of the system. In this analysis the natural 
frequencies and the normal vibration modes were determined. It was also shown that the system is 
stable, controllable and observable by measuring the position of the payload (xC(t)) and the position 
of the base (d(t)). 

In spite of the fact that the fuzzy controller is a nonlinear system, when it was designed with 
base on the information of the linear model behavior it did not work properly with the nonlinear 
model. This fact is not surprising. Indeed, the fact of the controller can be tuned, without structural 
changes, to control the nonlinear system with a desired performance is another important result of 
this work and need to be studied with more details. 

Two paths have been taken in order to continue this research. One consists in designing simple 
linear controllers, like PIDs, with base in the linear system and use the technique of optimal turning 
of controllers based on reference model, as presented in Hemerly (1996). Another way is to use an 
artificial  neural network (ANN) to identify the unmodeled dynamics in the linear model with 
respect to the nonlinear model (or real plant), and this ANN would generate a compensatory control 
signal that would be added to the control signal generated by the controller designed with base on 
the linear model. The signal given by this sum could be able to control satisfactorily the nonlinear 
system(see Cajueiro, 2000). 
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