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Abstract. This work presents a comparison between discrete and continuous optimization
techniques applied to improve the dynamics and the mechanical strength of a mini-baja prototype.
The behaviour of the vehicle under study is represented by polynomial models known as response
surfaces, which are obtained by the statistical manipulation of the results of a series of finite
element analysis of the mini-baja structure. These finite element analysis are performed under
different operational conditions in order to verify the robustness of each particular design
configuration. Response surfaces are also built aiming at approximate representations of the
robustness metrics. Next, the physical behaviour, as well as the robustness of the vehicle under
study, both of them modelled by means of response surfaces, are subject to numerical optimization.
In a first optimization attempt, the design variables are regarded as continuous entities, ranging
freely from the lower to the upper side constraint. Then, their variation is restricted to a set of
prescribed discrete values. The results of both approaches are compared, giving rise to some
conclusions and perspectives for future research work.
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1. INTRODUCTION

The Response Surface Method (R.S.M.) has been chosen for the application in this paper due to
its advantages concerning reduction of computational cost and improvement of the numerical
conditioning in the performance prediction and optimization of engineering systems (Box and
Draper, 1987). It is important to notice, however, that better numerical conditioning only results
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when the point set used to build the response surfaces is well balanced, according to the statistical
fundamentals of experimental design (D.O.E.). This statistical framework, on the other hand, allows
for the realization of interesting studies related to the optimality of engineering systems when
uncertainty issues are considered on their operating conditions (Taguchi et al., 1999).

Moreover, response surface models provide the designer with a global view of the design space,
including useful insight into the relative significance and correlation of the individual design
parameters influencing the responses of interest.

Finally, response surfaces are constructed based on response values only, and thus avoid having
to compute design sensitivities, whose computation is not always a trivial task.

2. OVERVIEW OF META – MODELING TECHNIQUES

As all meta – models, response surfaces are obtained according to the phylosophy described in
Fig. (1)

Figure 1. Illustration of the statistical meta – modeling rationale

which results in a procedure based on the four following steps:

a) Experimental design – a design space, including a range of design possibilities, is sampled in
order to reveal its contents and tendencies;

b) Choice of a model – the nature of the “meta-model” itself is determined, tacking into account
that the relations contained in the data gathered in the previous step have to be symbolically
represented, with the highest possible accuracy;

c) Model fitting – the model whose shape is defined in “b” is fitted to the data collected in “a”.
Differences in fitting schemes may affect the efficacy of “meta-modeling” techniques in the
solution of a given problem. In the case of the R.S.M., the least squares formulation is adopted,
as shown in Eqs. (1) and (2):
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where {Y} is the vector of responses (dependent variables) obtained for each line of the matrix [E]
which corresponds to the experimental design stage of meta-modeling. The vector {δ}contains free,
random error terms. The vector of model parameters {B} can be estimated as follows:
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variance-covariance matrix, a very important element in evaluating the quality of the meta-model,
as referred to in item “d”.



d) Verification of model accuracy – the three precedent steps are sufficient to build a first tentative
model, whose overall quality and usefulness have to be evaluated by adequate sets of metrics.
Each combination of design space sampling, model choice and fitting procedure leads to the use
of specific verification procedures.

Since the response surface meta-models are available, they can be used in a variety of
optimization procedures aiming at design improvement. Some of them are briefly addressed in
sections 3 to 5, and used in the illustrative case study of section 5.

3. OVERVIEW OF ROBUST ENGINEERING

The robust design phylosophy is based on two fundamental principles (Taguchi et al. , 1999):

•  When performance deviates from a given target value, a loss is caused, even if specifications are
still met;

•  Variation in operating conditions and intrinsic deviations from system ideal configurations
result in performance variability. Continuously pursuing variability reduction is key to achieve
high quality and reduce cost.

From the operational viewpoint, one of the possible approaches is to calculate robustness
metrics and tune system parameters (design variables) so that these metrics are optimized. The Cdk
metric, as shown in Fig. (2) and Eqs. (3) to (5) accounts for system performance variation against
engineering specifications. Higher values of the Cdk metric indicate more robust designs.

Figure 2. Graphical presentation of the robustness concept
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The parameters shown in Fig. (2) and Eqs. (3) to (5) are:



•  UCL/LCL: upper and lower design control limits. The difference between UCL and LCL is the
total design performance dispersion under the normal p.d.f (6σ);

•  USL/LSL: upper and lower design specification limits;
•  SM: Specified mean value (target performance);
•  PM: Effective mean performance.

4. DISCRETE OPTIMIZATION FUNDAMENTALS (Vanderplaats, 1998)

Sometimes it is desirable to choose the values of the design variables to be taken from a set of
discrete values. It should be noted, however, that the conventional and well established optimization
approach is not directly applicable to such problems, due to the inability of non – linear
programming methods to handle discrete design variable values. Quite often, one suggests to
overcome this obstacle by solving an equivalent continuous problem and then just round the design
variable values to the closest discrete values. Despite its simplicity, this approach may lead to
nonoptimal  or even infeasible design configurations.

More efficient approaches have evolved from the linear to the non – linear programming
domain, such as the “Branch and Bound Methods” (B.B.M.), which are used in this paper. In he
B.B.M., a continuous variable optimization is first performed, providing a starting point as well as a
lower bound on the discrete solution. Then, one of the design variables is increased to its next
discrete value and the optimization is performed with respect to the remaining variables. If the
optimum is worse than before, the variable is set to its next lower value and the process is repeated.
If an improvement is obtained, the search is continued in this direction until no improvement can be
found. Then, this variable is allowed to change, subject to the pertaining bounds, and the process is
repeated with the next discrete variable, until all of them are examined.

Although this method is theoretically correct for convex problems, numerical problems may be
associated with the accuracy of non – linear programming solution. Besides, the relativelly large
number of non – linear programming problems cannot be readily updated, leading to significant
increase in computational cost, which should be counterbalanced by the introduction of meta –
models to represent the responses of interest.

5. COMPROMISE OPTIMIZATION FOR MULTI – OBJECTIVE PROBLEMS

Multicriterion optimization problems arise in different engineering fields and considerable
attention is being devoted to develop methods aiming at their solution (Osyczka, 1984; Eschenauer
et al., 1990). The main difficulty to be considered is that the solution for multi – objective
optimization problems is non – unique.

The case study presented in this paper (section 6) encompasses seven responses of interest,
defining a situation prone to be formulated as a multicriterion optimization problem. Indeed, a
compromise programming formulation (Vanderplaats, 1998) is adopted, mainly because it accounts
for design specifications, similarly to the robust engineering approach presented in section 3. This
aspect can be visualized through Eq. (6)
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where:

•  F(X) is a compromise objective function
•  Fk is the k-th response of interest, in a total of K
•  F*k is the target value for the k-th response
•  Fpk is the worst value accepted for the k-th response



•  Wk is the weighting factor applied for the k-th response of interest

It should be noted that the optimization problem defined through Eq. (6) is unconstrained
because the K responses encompass both objective and constraint functions.

This formulation is well regarded because it considers engineering specifications through F*k
and Fpk, which helps in keeping a practical insight over the optimization problem.

6. CASE STUDY PRESENTATION

Figure 3 – Finite element model of the Mini – Baja prototype

The techniques presented in the previous sections are now demonstrated through the design
optimization of a Mini – Baja prototype, whose finite element model is shown in Fig. (3). This
optimization problem is stated by means of the design variables and responses described in Tab. (1)
and Tab. (2) respectivelly.

Table 1. Design variables for the optimization problem regarding the mini-baja prototype

Variable Lower Side Constraint
 (Code: -1.000)

Upper Side Constraint
(Code: 1.000)

Vehicle Length (V1) 1.8831 [m] 2.5477 [m]
Roof Width (V2) 0.4000 [m] 0.5200 [m]

Baseline Width (V3) 0.5950 [m] 0.8050 [m]
Structure Tubes Inner Diameter (V4) 0.0209 [m] 0.0350 [m]
Structure Tubes Wall Thickness (V5) 0.0021 [m] 0.0035 [m]

Table 2. Responses of interest for the optimization problem regarding the mini-baja prototype

R1 Mass of the Mini-baja prototype [kg]
R2 Strain energy under standard operating conditions [J]
R3 Second natural frequency of vibration [Hz]
R4 Third natural frequency of vibration [Hz]
R5 Fourth Natural frequency of vibration [Hz]
R6 Maximum force acting over the structure [N]
R7 Maximum torque acting over the structure [N.m]

The meta – modeling of the system responses with respect to the design variables requires the
realization of an experimental design such as the one displayed in Tab. (3).



Table 3. 152 −
=VR  experimental design for response surface generation (five design factors)

Coded design variable values
Runs V1 V2 V3 V4 V5

1 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 -1.000 -1.000
3 1.000 1.000 -1.000 1.000 -1.000
4 1.000 1.000 -1.000 -1.000 1.000
5 1.000 -1.000 1.000 1.000 -1.000
6 1.000 -1.000 1.000 -1.000 1.000
7 1.000 -1.000 -1.000 1.000 1.000
8 1.000 -1.000 -1.000 -1.000 -1.000
9 -1.000 1.000 1.000 1.000 -1.000
10 -1.000 1.000 1.000 -1.000 1.000
11 -1.000 1.000 -1.000 1.000 1.000
12 -1.000 1.000 -1.000 -1.000 -1.000
13 -1.000 -1.000 1.000 1.000 1.000
14 -1.000 -1.000 1.000 -1.000 -1.000
15 -1.000 -1.000 -1.000 1.000 -1.000
16 -1.000 -1.000 -1.000 -1.000 1.000

Table 4. Response values for 152 −
=VR  experimental design

Runs R1 R2 R3 R4 R5 R6 R7
1 97.704 1.550 47.139 68.540 76.025 878.300 1697.900
2 34.418 12.435 29.764 41.192 45.980 897.000 1781.700
3 54.529 2.617 41.042 68.114 73.083 974.800 1434.200
4 60.856 5.150 28.377 45.664 49.172 1004.400 1485.200
5 54.988 2.627 49.988 67.042 73.998 931.400 1592.400
6 61.369 5.560 34.991 44.780 49.788 962.300 1705.000
7 94.960 1.380 47.744 71.725 76.630 985.200 1395.500
8 33.451 9.957 30.172 43.323 46.314 976.500 1419.500
9 48.811 1.213 55.845 85.868 88.659 708.500 842.100
10 54.475 2.399 38.566 57.914 59.499 723.200 818.400
11 84.113 .646 53.840 90.181 95.203 786.100 517.900
12 29.630 4.656 32.864 54.672 57.683 815.200 497.200
13 84.926 .646 66.117 88.914 93.131 704.600 980.500
14 29.917 4.788 41.732 53.731 56.372 731.900 1016.700
15 47.218 1.221 58.034 86.126 92.718 793.600 514.100
16 52.697 2.375 40.062 57.934 62.279 820.200 501.700

The decision variable combinations, which define the design space samples, are arranged
according to a standard two – level fractiobal factorial design (Montomery, 1996). The least squares
interpolation procedure gives rise to the following linear response surface models, in order to
represent the physycal quantities listed in Tab. (2):

5V1336164V1522131V780637539571 ⋅+⋅+⋅+= ....R   (7)



5V238014V213821V45821701232 ⋅⋅⋅+= .-.-..R   (8)

5V087314V951383V000522V587821V865245172433 ⋅+⋅+⋅+⋅⋅= ....-.-.R                           (9)

5V599114V2063141V809971074644 ⋅+⋅+⋅= ...-.R             (10)

5V682714V1475151V159675334685 ⋅+⋅+⋅= ...-.R (11)

3V6750381V41259582508556 ⋅⋅+= .-..R (12)

3V83801661V4250426500011377 ⋅+⋅+= ...R (13)

The quality of these meta – models is measured by means of the adjusted multiple correlation
coefficient ( 2

aR ), that measures the proportion of the data variability which is captured by the
statistical model. The values of 2

aR for responses R1 to R7 are respectivelly equal to 95.63%,
71.75%, 97.57%, 98.33%, 98.40%, 96.90% and 96.97%.

It is important to highlight the good levels of explained variance obtained with these response
surfaces, expressed by means of the 2

aR values, which are close to 100.00%.  This situation is
expressive considering that all models are linear, resulting from unexpensive experimental designs
that demand few finite element runs in comparison to more sophisticated ones, aimed at
constructing higher order models.

An exception holds for the strain energy (response R2), whose response surface is able to
explain only 71.75% of the data variance. Since this value is just reasonable, caution is to be taken
when interpreting estimates resulting from this particular response surface model.

Equations (7) to (13) are then combined in the following optimization problem statement:

Minimize the Strain Energy (Eq. (8)), subject to:
•  Mass (Eq. (7)) ≤ 30 kg
•  Second Natural Frequency of Vibration (F2 ⇔ Eq. (9)) ≤ 40 Hz
•  Third Natural Frequency of Vibration (F3 ⇔ Eq. (10)): 48 Hz ≤ F3 ≤ 52 Hz
•  Fourth Natural Frequency of Vibration (F4 ⇔ Eq. (11)): 55 Hz ≤ F3 ≤ 60 Hz
•  Maximum Resultant Force (Eq. (12)) ≤ 800 N
•  Maximum Resultant Torque (Eq. (13)) ≤ 1000 N.m

The real aim of this optimization problem statement is to reduce mass. Since it cannot be
achieved at the expense of structural integrity, the optimizer is programmed to minimize the strain
energy as well. It should be noted, however, that the strain energy, which is a global metric, may be
minimized while local loads are increased, which is not desirable. For this reason, (local) maximum
forces and torques are also constrained to safety values.

Constraints imposed over natural frequencies of vibrations address the issue of resonance
avoidance. Second, third and fourth natural vibrating frequencies may not coincide with vibration
induced by the vehicle’s powertrain at the maximum engine torque, power and rotation regimes.

7. RESULTS PRESENTATION AND ANALYSIS

7.1. Results of continuous optimization

In this first approach, the design variables are allowed to vary freely from their lower to their
upper side constraint values. The design improvement thus obtained is shown by the comparison in
Tab. (5). These results are obtained by means of changes in the design variables, as shwn in Tab.
(6).



Table 5. Response values before and after continuous optimization procedure

Response Initial Design Value Optimal Design Value
Mass (R1, Eq. (7)) 57.7539 30.0235

Strain Energy (R2, Eq. (8)) 3.7012 4.7966
2nd  Natural Frequency (R3, Eq. (9)) 43.5172 45.1856
3rd  Natural Frequency (R4, Eq. (10)) 64.1074 61.8756
4th  Natural Frequency (R5, Eq. (11)) 68.5334 65.0083

Maximum Force (R6, Eq. (12)) 855.8250 736.9431
Maximum Torque (R7, Eq. (13)) 1137.5000 812.3185

Table 6. Design variable values before and after continuous optimization procedures

Design Value Initial Design Value Optimal Design Value
V1 2.2154 1.8831
V2 0.4600 0.4137
V3 0.7000 0.7637
V4 0.0280 0.0238
V5 0.0028 0.0021

7.2. Results of discrete optimization

The continuous optimization procedure shown in section 7.1 is meaningful for design variables
V1, V2, and V3. The two remaining variables, however, have to comply to commercially available
tube dimensions. It means that the optimizer is only allowed to change them according to a pre –
defined discrete set of values, as shown in Tab. (7).

Table 7. Discrete value sets for design variables V4 and V5

Physical Values D.O.E. Coded values
Inner Diameter (V4) Wall Thickness (V5) Inner Diameter (V4) Wall Thickness (V5)

21.200 2.100 -0.96176 -1.00000
20.930 2.870 -1.00000 0.057692
26.645 3.378 -0.19062 0.755495
35.052 3.556 1.00000 1.00000

Taking these additional constraints into account, the optimization procedure leads to changes in
system performance and configuration, which are shown in Tab. (8) and Tab. (9) respectivelly.

Table 8. Response values before and after discrete optimization procedure

Response Initial Design Value Optimal Design Value
Mass (R1, Eq. (7)) 57.7539 27.3182

Strain Energy (R2, Eq. (8)) 3.7012 6.4308
2nd  Natural Frequency (R3, Eq. (9)) 43.5172 36.5931
3rd  Natural Frequency (R4, Eq. (10)) 64.1074 52.2597
4th  Natural Frequency (R5, Eq. (11)) 68.5334 55.4126

Maximum Force (R6, Eq. (12)) 855.8250 801.6395
Maximum Torque (R7, Eq. (13)) 1137.5000 1004.8662



Table 9. Design variable values before and after discrete optimization procedure

Design Value Initial Design Value Optimal Design Value
V1 2.2154 2.0701
V2 0.4600 0.4600
V3 0.7000 0.7339
V4 0.0280 0.0212
V5 0.0028 0.0021

Comparing response results of Tabs. (5) and (8), for the continuous and discrete optimization
procedures, respectivelly, it is possible to observe that the more constrained design space resulting
from the discrete formulation does not necessarily means that the its optimum is worse than the one
from the continuous case. In the case of the mini – baja prototype, the optimizer managed to find a
suitable search direction along the design space leading to an even better result with respect to the
mass, which is the most important design parameter.

It should be noted, however, that this result is obtained for discrete but unlinked values for V4
and V5, which does not correspond to the reality of commercially available structural tubes. In an
attempt to express V5 as a function of V4, which is set to vary discretelly, the optimizer faces
numerical conditioning problems with the implicit derivatives that arise when calculating the
sensitivities of the responses with respect to V5. This lack of numerical conditioning forces
premature convergence to a sub – optimum.

7.3. Robust design results

Design robustness with respect to variable operating conditions is determined for strain energy,
maximum force and maximum torque (R2, R6 and R7, respectivelly).

The metric Cd (Eq. (3)) is used to quantify the robustness of candidate designs. Since there is a
Cd value associated to each run of Tab. (3), a response surface can be interpolated for this metric.

These response surfaces are then added, in the form of additional constraints, to the optimization
problem developed in section 7.2.

By means of Tab. (10), it is possible to notice that the robustness constraint penalizes the mass
reduction achieved in section 7.2. In order to cope with stringent operating conditions, the optimizer
makes a stiffer structure, which rises both the mass and the natural frequencies of interest of the
mini – baja prototype.

Table 10. Response values before and after robust design procedure

Response Initial Design Value Optimal Design Value
Mass (R1, Eq. (7)) 57.7539 48.8114

Strain Energy (R2, Eq. (8)) 3.7012 1.2125
2nd  Natural Frequency (R3, Eq. (9)) 43.5172 55.8445
3rd  Natural Frequency (R4, Eq. (10)) 64.1074 85.8675
4th  Natural Frequency (R5, Eq. (11)) 68.5334 88.6585

Maximum Force (R6, Eq. (12)) 855.8250 708.5000
Maximum Torque (R7, Eq. (13)) 1137.5000 842.1000

The new design variable values thus determined are shown in Tab. (11). When comparing the
results in Tabs. (9) and (11), it is evident that the additional design constraints posed by the
robustness requirements force the optimizer to search for configurations that are signifficantly
different from the initial design. When robustness is not considered, on the other hand, the
difference between the initial and the optimum design variable sets is less signifficant.



Table 11. Design variable values before and after robust design procedure

Design Value Initial Design Value Optimal Design Value
V1 2.2154 1.8831
V2 0.4600 0.5200
V3 0.7000 0.8050
V4 0.0280 0.0350
V5 0.0028 0.0021

8. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH WORK

The response surface based meta – modeling technique used in this work managed to represent
the behaviour of a complex system in order to optimize its performance at the expense of reasonable
amounts of computational resources, in both continuous and discrete formulations. Also, complex
and abstract design aspects such as the robustness metrics find quite satisfactory representation in
the response surface models. The absence of convergence problems regarding the numerical
optimization procedure should also be noted for the continuous case, whilst the implicit design
variable dependence in the discrete case resulted in some numerical difficulties.

The statistical methodology underlying the R.S.M. provides the means necessary to implement
robust engineering studies, aiming at the maintenance of the system performance even if its
operational conditions change.

The results obtained had shown, however, that optimality and robustness may be conflicting
characeristics. For this reason, interesting research can be conducted in order to find adequate
formulations so that the robustness issues are embedded into the optimization problem. This may
help to improve the compatibility between optimality and robustness, leading to designs that may
maintain high level average performance under a broad range of operating conditions.

This may be achieved by reformulating the response surface meta – models that describe the
system behaviour, so that performance criteria are also expressed in terms of the operating
conditions. This will ease and reduce the computational effort necessary to perform extensive
simulation studies, whose resulting statistical metrics may then be embedded as objective and/or
constraint functions within an optimization procedure.
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