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Abstract. Methods of analysis for a two-dimensional cracked solid to evaluate the stress intensity
factor (SIF) along the crack tip have been studied using the finite element method in conjunction
with the J-integral method. The SIF was obtained by the J-integral method, which has been
described in two approaches. The first approach considers a line integral path and the second
considers the equivalent domain integral (EDI). The displacement field near the crack tip was
modeled using isoparametric singular elements (quarter point elements).  Two values of crack
depth ratio and different lengths of the quarter point elements were tested to verify the accuracy of
the developed routines. These routines were implemented in a commercial finite element code (FEM
code). The results were analyzed and compared by analytical expression developed to geometry in
study.

Keywords: Stress Intensity Factor, J Integral, Line Integral Path, Equivalent Domain Integral-EDI,
Finite Element Method.

1. INTRODUCTION

Computers have had an enormous influence in virtually all branches of engineering, and fracture
mechanics is no exception. The use of fracture mechanics during the design process has been
increasingly used during last years, because numerical modeling has become an indispensable tool
in fracture analysis, since relatively few practical problems have closed-form analytical solutions
(Anderson, 1995 and Erdogan, 2000). The evaluation of stress intensity factors by means of
numerical methods (finite element method and boundary element method) are widely used. In the
finite element method a number of techniques have been proposed  for  evaluating stress intensity
factors. A very important phase in these techniques is the representation of the crack tip singularity.
To represent adequately the singular stress-strain field near the crack tip, a modified isoparametric
element was introduced by Henshell and Shaw (1975) and Barsoum (1976). They noticed that by
displacing the midside-node of an eight-noded quadrilateral element to the quarter point position the
element stress-strain field naturally exhibits a square root singularity.

Basically, there are two groups of estimation methods: those based on displacement or stress
matching methods (displacement or stress correlation methods) and those based on energy methods
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(total energy method, stiffness derivative formulation, mapping technique, J-integral method,
energy domain integral or crack closure integral method), (Antunes et al 1999 and Guinea et al
2000). Several algorithms for the determination of stress intensity factors and verification of crack
propagation were applied and tested by various convergence criteria by Owen and Fawkes (1983);
Raju and Shivakumar (1990); Woo et al (1998); Araújo et al (2000); Santos et al (2000); Santos and
Carvalho (2001) and Kim and Paulino (2002). In this work was studied the J-integral method to
determine the stress intensity factors.

Two different approaches were implemented in the post-processor of a commercial FEM code
(ANSYS ). The first approach is based in the methodology developed by Owen and Fawkes (1983)
that used a contour path around the crack tip and the contribution to the J-integral from a individual
element was evaluated in the gaussian points for ξ  = ξ p or η =  ηp. The second approach is based in
the methodology proposed by Raju and Shivakumar (1990) where line J-integrals were converted to
equivalent area or domain integrals by the divergence theorem that is called the Equivalent Domain
Integral – EDI. The results are presented for a closed-form solution problem under mode I of
fracture conditions. The precision of the methodologies is discussed and analyzed. Different
geometry configurations and mesh refinement were tested to verify the applicability of the
developed routines.

2. J-INTEGRAL

As proposed by Rice (1968), the J-integral is defined by familiar expression:
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is the total strain energy density, jiji nT σ= are the components of the traction

vector, jn  are the components of the unit vector normal to the contour Γ , ui are the displacement

vector components and ds is a length increment along the contour Γ , Fig. (1).
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Figure 1. Contour around the crack tip

In the case of a homogeneous, isotropic, linear elastic material surrounding the crack tip, the
relation among the component of the J-integral and mode I stress intensity factors is established as
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where µ=E/2(1+ν) is the shear modulus; κ=3-4ν for plane strain and κ=(3-ν)/(1+ν) for plane stress;
ν is the Poisson’s ratio and E is the modulus of elasticity.

Line Integral

How described by Owen and Fawkes (1983), since the integral is path-independent, the path can
be conveniently chosen to coincide with the line ξ  = ξ p = constant, shown in Fig. (2).
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Figure 2. Contour path for J-integral evaluation, (Owen and Fawkes, 1983)

The contribution to the J-integral from an individual element is defined by:
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The integration in Eq. (3) must be undertaken numerically. In particular
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in which the integrand I is evaluated at the Gaussian sampling points qp ηξ , and qW is the weighting

factor corresponding to qη . The Cartesian derivatives of the displacement components required in
Eq. (4) are given by
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in which ui are the displacements of the nodes of the elements and the cartesian derivatives of the
elements shape functions are given by
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in which the terms jx/ ∂∂ξ , jx/ ∂∂η may be obtained from the inverse of the jacobian matrix given
by
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The total value of J-integral is given by summing the contribution of all elements forming the
integral path and the stress intensity factors are finally given by Eq. (3). Since the contour integral is
accumulated from the paths ξ  = ξ p = constant through neighbouring elements as shown in Fig. (2),
this places restrictions on both the finite element mesh and the order of nodal numbering of
elements through which the integral path is to pass.

Equivalent Domain Integral

As described by Raju and Shivakumar (1990), using the divergence theorem which can convert
the line integrals into an area or a domain integral. Consider two contours Γ 0(OABCO) and
Γ 1(ODEFO) around the crack tip as shown in Fig. (3). The two contours will enclose an area
DEFCBAD.
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Figure 3. Contours around the crack tip, (Raju and Shivakumar, 1990)

By multiplying the integral over Γ 0 by unity an the integral over Γ 1 by zero, J can be expressed
as
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This manipulation is performed to convert the line integrals into area or a domain integral. In
Eq. (8), this can be expanded as, Raju and Shivakumar, (1990)
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To interpolate two contours between Γ 0 and Γ 1 shown in Fig. (4), the continuous q-function,
denoted by q(x1, x2), is introduced with the property of
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Figure 4. Example of q-functions

It can be that 1),( 21 =xxq  on the Γ ABC and 0),( 21 =xxq  on the Γ DEF. Invoking the divergence
theorem, the closed line contour integral can be converted to a domain integral as:
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It can be notice that the second term of the above integral expression vanishes for elastic
problems. The domain integral Eq. (12) can be rewritten in a form convenient to finite element
computations as
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Once the q-function, denoted by ),( ηξq , is defined, as shown in Fig. (4) the partial derivatives
of q, can be easily computed by jacobian matrix as
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Therefore the final form of the domain integral J can be shown using gaussian quadrature as
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where NGAUS is the number of Gauss point used in each direction points qp ηξ , and pW  and qW are
the weighting factors, and Det[Jac] is the determinant of the jacobian matrix [Jac]. In this study, 2 x
2 gauss points were used for computation both line integral lineJ  and domain integral domainJ
Equations 4 and 13, respectively.

3. NUMERICAL RESULTS AND DISCUSSIONS

The above procedures for evaluating the stress intensity factor KI (equations 4 and 13), were
applied to the well known geometry shown in Fig. (5), a center cracked plate tension specimen
(CCT). The geometry was analyzed in generalized plane stress, width (2W=0.2 m) and crack depth
ratios (a/W=0.5 and a/W=0.1). The material parameters were the Young’s module (E=30 GPa) and
Poisson’s ratio (ν = 0.3). The stress applied was σ=100 MPa. The mesh was generated using eight-
node isoparametric elements and the crack tip was modeled using the singular element (quarter
point), (Ansys, 1995).
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Figure 5. Center cracked plate tension specimen (CCT) geometry.

The values of IK were confronted with the values calculated by a polynomial expression
(Anderson, 1995)
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Different levels of mesh refinement were used considering the number of element around the
crack tip (N) and the length of the singular element (L). The length of element regular (b) was
considered the same length of singular element (b = L). In the Fig. (7), shown the examples of mesh
generated in the FEM code used.
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Figure 6. Mesh generated, with N=8 elements and a/L = 4. (a) a/W=0.5 (b) a/W=0.1.

The J-integral was evaluated along elements near the crack tip shown in Fig (7). The elements
(domain) were used to evaluate the integrals (line integral and domain integral). The paths
employed in solution to evaluate line integral passed through the two integration contours
corresponding ξ =ξ 1 and ξ =ξ 2 of domain shown giving a total of two contours path. To compute the
domain integral the q-function used was the type I being a simple linear function. This q-function
was created by defining the values of q at nodes on the elements as discussed by Raju and
Shivakumar (1990).

Figure 7. Elements selected to establish the path used in the J-integral calculation

The results, considering two crack depth ratio for the mode I of fracture, are shown in the Tabs.
(1) and (2). In general can be observed that the results obtained through different methods are
consistent and the accuracy on KI was good for all the methods, well under 6% in module for almost
all cases.



Table 1. Values of KI (MPa m ) to a/W=0.5, (KItheoretical = 47.132 MPa m ).

N a/L KI
(Line Integral ξ 1)

KI
(Line Integral ξ 2)

KI
(EDI)

8 4 49.489 49.561 49.484
8 49.440 49.479 49.437
16 49.503 49.543 49.499
32 49.466 49.522 49.462

16 4 49.466 49.508 49.463
8 49.478 49.511 49.475
16 49.490 49.523 49.488
32 49.584 49.636 49.580

Table 2. Values of KI (MPa m ) to a/W=0.1, (KItheoretical = 17.941 MPa m ).

N a/L KI
(Line Integral ξ 1)

KI
(Line Integral ξ 2)

KI
(EDI)

8 4 17.871 17.864 17.871
8 17.817 17.849 17.814
16 18.146 18.186 18.143

16 4 17.884 17.896 17.883
8 18.195 18.221 18.193
16 17.900 17.917 17.899

In the Fig. (9) and Fig. (10) are shown the percent difference from the results obtained to the
stress intensity factor for the mode I of fracture. In these figures the effects of the size of singular
element are illustrated. The figures show the results, with crack length element sizes ratio ranging
from 4 to 32. A local refinement used in this work improve accurate estimation of KI.
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Figure 9. Difference in the values of stress intensity factor a/W=0.5. (a) N=8; (b) N=16
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Figure 10. Difference in the values of stress intensity factor a/W=0.1. (a) N=8; (b) N=16

The observed accuracy in KI values trough the methodologies studied are found to be consistent
with the calculations by analytical expression and it’s in agreement with the results obtained in the
literature.

Using the J-integral methods by approach line integral and Equivalent Domain Integral – EDI
the results were not affected by the mesh refinement in the cases using crack depth ratio a/W=0.5.

However it can be that results are consistent with the relation suggested by Raju (1987) and
Araújo et al (2000) (a/L= 16 and a/W=0.1) when the maximum errors encountered was 1.8 % for
KI. It can be notice that results encountered in this wok was 2.2 % for the same geometry.

Can be observed that the number of elements around the crack tip did not influence results
calculated. However the results are compatible with the obtained by Araújo et al (2000) when
studied the influence of rosette type that involves the crack tip. They used a rosette with N=8 and
N=12 elements to single edge crack tension specimen geometry and presented results converge,
slowly, to the value of reference with the increase of number elements at the crack tip.

4. CONCLUSIONS

Methodologies based on the J-integral methods were used in this work very successfully. It was
shown that the results obtained through different methods are consistent and the level of accuracy
obtained were not dependent of mesh refinement used in the model. The observed inaccuracies
stress intensity factors trough to crack depth ratio a/W=0.1 is found to be consistent with those from
literature calculations considering the relation proposed by Raju (1987) a/L=16.

 In general the values of the stress intensity factors did not influenced by the number of the
singular elements around the crack tip.

Accurate results were obtained by the methodologies using the concept line integral and the
concept of Equivalent Domain Integral. In these techniques very accurate results were obtained for
the coarse meshes.

In addition, it was shown that the use of a commercial finite element package made possible to
the stress intensity factor calculation directly from the post processor page. This was realized,
because the software has a scripting language (Ansys Parametric Design Language - APDL) used to
automate the analysis (Ansys, 1998).
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