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Abstract. Cohen’s based energy distributions constitute a technique, which transforms the time 
domain vibration response that is represented in the 1-D space in a 2-D representation in the time-
frequency domain. The major advantages of this transformation are: (i) enable the analysis of the 
modifications that occur in the frequency components of a given signal along the time; (ii) identify 
what is the time duration of such modifications. The present paper is focused on the investigation 
of the non-linear dynamic behavior in the time-frequency domain by using two types of 
transformations: the spectrogram and the Wigner-Ville distribution. The results obtained show 
that: (a) the presence of high-harmonics can be identified and isolated; (b) the amplitude-
frequency dependence of the vibration response can be detected and analyzed. The analysis 
methodology proposed in this paper is illustrated by performing numerical simulations on two non-
linear systems that are modeled by the Duffing equation having one and five-degrees-of-freedom. 
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1. INTRODUCTION 
 

Success in product development depends on reaching the market with innovative products that 
are, for example, smaller, cheaper, and more ergonomic, and yet more reliable. One crucial factor in 
order to get reliable products is their dynamic behaviour. Undesired vibrational behavior could, for 
example, lead to fatigue or a high noise levels and in some cases to catastrophic accidents. Thus, the 
knowledge of the system�s dynamic characteristics is crucial in order to achieve a good design.  

In almost all design situations, the product to be designed and built is composed of flexible 
components in such a way that it transforms a time varying input signal into an output signal that 
presents its own characteristics. In addition to the representation of the system�s response, the 
output signals can also represent the system, for example, the impulse response describes its 
properties, and can be use to dynamically characterize the system. 

When dealing with vibration signals, the system is usually subjected to input signals that for 
instance can be represented by forces while the system�s output responses can be given in terms of 
displacements, velocities or accelerations. In some practical cases it is difficult to obtain 
information about the input/output signals in the time domain. To overcome this difficulty many 
signal processing techniques were developed. Theses techniques are based on three domains: the 
amplitude, frequency and time-frequency domains. The appropriate domain to assess the system�s 
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and input/output characteristics depends on several factors, including availability of measurements, 
and more important non linear effects presented by the system under study. When the system can be 
modeled as linear, frequency domain techniques based on the concept of Fourier Series is widely 
employed in the analysis. However, no real system is linear. Mechanical systems may contain many 
elements with nonlinear properties, such as, Coulomb sliding friction, nonviscous damping, plastic 
strain, large deformations, contact deformations, impacts, and geometric nonlinearities (Rao,1992). 

For practical purposes, nonlinear systems are in many cases regarded as linear systems since the 
degree of nonlinearity is insignificant, what allows the system to be considered linear. However, 
due to the increased requirements in terms of speed, power and reliability of mechanical systems, 
nonlinearities may become progressively more significant. In theses cases, the assumption of 
linearity is not appropriate for studying the dynamics of such systems.  

For the cases where nonlinear effects is significant, the traditional technique to characterization 
and analysis based on Fourier methods is uncapable to show important properties about the system. 
To illustrate this,  Fig.(1) shows the impulse response of a SDOF system in two situations: linear 
and nonlinear (due the stiffness force). Figs. (1a), (1b) and (1c) show respectively the input time 
history response, the spectral density of the impulse response and the frequency response function 
(FRF) considering the linear system, and  Figs. (1d), (1e) and (1f) show in the same order, but 
consider the system with a nonlinear stiffness force. 

From this figure, in the linear case of Fig.(1a) to Fig(1c) the impulse response consists of a 
single harmonic mode with natural frequency of 4 Hz represented by the high amplitude in the 
spectrum to this frequency. The same information can be found from the bode plot representation of 
the FRF. However, for the nonlinear case showed in Fig.(1d) to Fig.(1f) it is difficult to find with 
accuracy what is the natural frequency or how the natural frequency changes with the time. This 
simple example shows that when the nonlinearity is significant, the traditional method to 
characterize and analyse based on the frequency domain is not adequate.  
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Figure 1. Input response analysis for a SDOF system on two situations: linear e nonlinear (a) time 

history for the input response of the linear system; (b) spectra to linear input response; (c) 
FRF to linear system; (d) time history for the input response of the nonlinear system; (e) 
spectra to nonlinear input response; (f) FRF to nonlinear system. 

 
In order to make the investigation of the dynamic behavior of the nonlinear systems possible, 

many classical methods were developed in the last decades, such as analytical methods that include 
pertubation methods, describing function, harmonic balance method, among others (Szemplińska-
Stupnicka, 1990; Rao,1992) and experimental methods that include, Hilbert transform (Lin, 1990; 



 

Feldman, 1997), plane-phase (Lin, 1990), Poincarè map (Thompson & Stewart, 1986), High-Order 
FRF (Chartterjee, 2001), among others. Theses methods provide theoretical and experimental basis 
for understanding the dynamic behaviour of nonlinear systems. 

Currently, a large amount of research results focusing on the new directions of the nonlinear 
theory can be found, and this shows that the dynamic behaviour of the nonlinear systems is still a 
topic for further research. Imregun & Chong (2000) studied the coupling between nonlinear sub-
systems using variable modal parameters; Woren & Manson (1999) studied the random vibration of 
the MDOF system using Volterra series; Vakakis (1997) studied nonlinear normal modes and their 
applications on the vibration theory and Feldman (1997) identify nonlinear behaviour using the 
Hilbert transform. 

The major goal of this article is to employ time-frequency distributions in order to study the 
dynamic behavior of nonlinear systems. Two nonlinear systems, a SDOF and a MDOF with five 
degree of freedom are used in numerical simulations with Matlab and Simulink in order to assess 
the nonlinear dynamics of these systems. Two  distributions of the Cohen class (Cohen, 1995) were 
used, the spectrogram that is based on the short time Fourier transform and the Wigner-Ville 
distribution. Basic theories related to the spectrogram and the Wigner-Ville distributions are 
reviewed in order to explain the main differences and advantages between theses quadratic time-
frequency representations. The main characteristic of the time-frequency analysis, its major 
advantages and disadvantages are discussed, based on several numerical simulations under many 
dynamic conditions. 
 
2. TIME-FREQUENCY ANALYSIS 
 

The analysis of a signal is usually performed in the time or frequency domain. Different 
properties and parameters can be obtained when the time and frequency analysis are performed. The 
energy | x(t) |2 of the signal x(t) per unit of time at the particular time t, can be obtained when time 
domain analysis is used. At the same time, the energy density of the signal per unit frequency at the 
particular frequency f is given by | X(f) |2 in the frequency domain, where X(f) is the Fourier 
transform of x(t). 

When the spectral content of the signal is changing in time, neither the time nor the frequency 
domain is sufficient to describe the signal properties accurately. Clearly, the energy density | X(f) |2 
becomes a function of time. The analysis of a signal using the joint time-frequency approach is 
called time-frequency analysis. It gives a new signal representation F(t,f), being a function of time 
and frequency. Since, in a physical interpretation, the spectrum of the signal is a power frequency 
distribution, by analogy the function F(t,f) is also called a distribution, and in fact, it represents the 
signal energy at a time t for different values of frequency f (Boualem, 1992) 

There are many different time-frequency distributions with various properties. In this paper two 
types were used: the spectrogram, which is the squared modulus of short-time Fourier transform 
(STFT) and the Wigner-Ville distribution (WVD). Both of them, the spectrogram and WVD were 
briefly showed below (Boualem, 1992; Cohen, 1995). 

 
2.1. Short Time Fourier Transform ( STFT ) 
 

The short-time Fourier transform is the most widely used method for studying non-stationary 
signals. The concept behind this mathematical tool is simple and powerful. The STFT is essentially 
an application of the Fourier transform with a short moving time window to a long time series to 
obtain its time-frequency representation (Boualem, 1992; Cohen, 1995). 

To study the properties of the signal at time t, the signal is multiplied by a window function, 
h(t), centered at t, to produce a modified signal, that is give as 
 

( ) ( ) ( )thsst −= τττ                                                                   (1) 
 



  

The modified signal is a function of two time variables, the fixed time we are interested in, t, 
and the running time, τ. The window function is chosen to keep the signal as unaltered as possible 
around the time t, but suppress the signal for instants far away from the time of interest. 

Since the modified signal emphasizes the signal around the time t, the Fourier transform will 
reflect the distribution of frequency around that time, mathematically we can write the STFT like 
(Cohen, 1995): 
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                                      (2) 

 
There are many advantages and limitations in the use of the STFT. Perhaps, the major limitation 

of this technique is to obtain simultaneously good resolutions in both, the time and frequency 
domains. To represent the signal with more details in the time domain, the only option in the STFT 
is to make the time window shorter. If the sample rate of the signal remains the same, choosing a 
shorter time window makes the frequency resolution worse. 

The short-time Fourier transform method is ideal in many aspects. It is well defined, based on 
reasonable physical principles, and for many signals and situations it gives an excellent time-
frequency representation. However, for some situations it may not be the best method available in 
the sense that is does not always give the clearest possible representation of the system dynamics. 
Thus other methods have been developed, and one of them will be present below. 
 
2.2. Wigner-Ville Distribution Function ( WVD ) 
 

The Wigner distribution (WD) has been the most widely studied time-frequency distribution. It 
was developed in quantum mechanics by Wigner and implemented in signal processing by Ville. 
Many other developments have been made since then. The distribution was rediscovered again in 
the beginning of the 1990s in a series of papers by Claasen and Mecklenbrauker who also 
introduced the first discrete approach to the WVD. The distribution has found many successful 
applications in different areas such as acoustics, speech processing, detection and estimation 
problems, biosignal processing, seismology and engineering. 

The Wigner distribution can be derived by generalising the relationship between the power 
spectrum and the autocorrelation function for nonstationary time-variant processes. The physical 
interpretation of the generalised power spectrum F(t,f) is that it represents the instantaneous power 
density spectrum. This approach leads to the WD defined as show the Eq.(3), where the superscript 
* denotes the complex conjugate (Boualem, 1992; Cohen, 1995)..  
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The Wigner distribution (WD) of the analytic signal is called the Wigner-Ville distribution 

(WVD). The analytic signal is defined as the Hilbert transform of the original signal. It is well 
known that the spectrum of the analytic signal does not have any negative frequencies, thus the 
WVD is very often used in practical applications since it avoids interference between positive and 
negative frequencies. 

Signal analysis techniques based on the Wigner-Ville distribution (WVD) can achieve high 
resolutions in both the frequency and time domains. The original WVD satisfies some desirable 
distribution properties, such as the reality, shift in time and in frequency, finite support in time and 
frequency, marginal in time and frequency, instantaneous frequency, and group delay properties. 
Mathematical definitions of these can found in Cohen (1995). One undesirable property of WVD is 
that it is not always positive due to the cross or interference terms (ITs).  

 



 

3. ANALYSIS PROCEDURE 
 

The behavior of the two just presented time-frequency analysis was investigated based on the 
dynamic behavior of two discrete systems. The first is a SDOF nonlinear system, showed in 
Fig.(2a). The second is a MDOF nonlinear system with five degrees of freedom, showed in 
Fig.(2b). In both, the nonlinear effect is due to the nonlinear stiffness force, which is proportional to 
the cube of displacement. 

 

  
(a) (b) 

 
Figure 2. Nonlinear system studied: (a) SDOF system and (b) MDOF system. 

 
It is assumed that the governing differential equation of SDOF Duffing�s nonlinear system as 

showed in Fig.(2a) can be written as showed in Eq.(4). For the MDOF Duffing�s nonlinear system, 
showed in Fig.(2b), it is assumed that the governing system of differential equation can be written 
as showed in Eq.(5). Other important parameter is the Duffing�s nonlinear coefficient µ, which is 
described by Eq.(6).  
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To obtain the solution of Eq.(4) and Eq.(5), two dynamic models were built using Matworks 

Simulink®. A Simulink® model consists of three types of elements: sources, the system being 
modeled, and sinks. In this paper, the sources and the sinks were developed using Matworks 
Matlab®. In both systems, the SDOF and the MDOF, two input conditions were considered: 
impulsive and periodic senoidal. A pulse which duration is compatible with interest range 
approximates the impulse input. 

 
3. RESULTS AND DISCUSSIONS 
 
3.1. SDOF Damped System for Impulse Excitation 

 
To obtain the characteristics of the SDOF, a pulse with duration of the 0.2s was used, which has 

got enough energy in the range of interest. The SDOF system in analysis, showed in Fig.(2a), has 
got a  natural frequency (linear case) equal to 4 Hz, damping ration of 1%, mass of 0.5Kg, stiffness 
of 315,82 N/m. 

 
Case 1: Linear with variable force: F=25N; 50N and 75N. 

 
In this case it three amplitude to the impulse excitation were used, 25N, 50N and 75N, in order 

to evaluate the characteristics of the linear system to the variable force in the time frequency plane, 



  

showed by Fig.(3). Figure (3a) to the Fig.(3c) represent the results obtained by spectrogram. By the 
analysis of those figures, it is possible to see that the energy of the signals is concentrated in a 
constant frequency of 4 Hz and a range between five to fifteen seconds approximately. 

It is also possible to see that the color scale changes with the amplitude of the impulse, from 
one, the red, when the amplitude is 25 N, to nine, when the amplitude is 75 N, describing thus the 
changes of the response amplitude. 

The same results can be seen in Fig.(3d) to Fig.(3f), that represent the results obtained by 
Wigner-Ville distribution, with two main differences:(i) There are some distortions in the beginning 
and (ii) there is a better precision in time and frequency, when compared to the spectrogram. 

 
Case 2: Nonlinear with constant force (75N) and µ variable: µ=-2; -1 and 2. 

 
The main point is to analyze the behavior of the system using time-frequency distributions when 

the Duffing coefficient (µ) changes. For this analysis three values for µ: -2, -1 and 2 were used. 
They represent two phenomenon the �softening stiffness� and �hardening stiffness� defined in the 
classical nonlinear theory. 

For the softening spring (µ= -2), in the spectrogram (Fig.(4a)) one can see that most of the 
energy is concentrated in a frequency range between 3 Hz and 4 Hz and in a time range between 5s 
and 10s approximately, showing the relation between amplitude-frequency of the response, but one 
cannot see what this relation is. In Fig. (4d) which represents the Wigner-Ville distribution, one can 
see accurately that the oscillation frequency varies during the decay in a exponential form. The 
physical interpretation of this behavior is easily obtained by observing that the stiffness reduction 
for large amplitude excursions will be accompanied by a slower oscillation. When the duffing 
coefficient reduces from �2 to �1, the nonlinear effects are strongly reduced and there is a soft 
decrease of the natural frequency, better observed in WVD.  

For the hardening spring, one can better see in the WVD Fig. (4f) than the spectrogram Fig. 
(4c), that the stiffness increase for large amplitude excursions will be accompanied by a faster 
oscillation. 

 

Figure 3. Time-frequency representations, linear system with variable force, 25N; 50N and 75N. 
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Figure 4. Time-frequency representations to nonlinear with constant force (75N) and µ variable: µ=-
2; -1 and 2 

 
3.2. SDOF Damped System For Periodic Excitation 

 
Case 1: Nonlinear with µ and frequency constant (µ=3 and f=2Hz ) and amplitude variable: 

Fa=100N and 200N. 
 

 

Figure 5. Time-frequency representations to nonlinear with µ and frequency constant 
(µ=3 and f=2Hz ) and amplitude variable: Fa=100N and 200N. 

 
In this case, the main point is to analyze the response behavior of the SDOF nonlinear system 

with µ=3 under variable amplitude of excitation. When an amplitude of excitation of 100N is used, 
in both the spectrogram and WVD, one can see just a single component and such frequency is equal 
to 2 Hz during all the time without changes, Fig.(5a) and Fig(5c). When the amplitude of the 
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harmonic input becomes larger (200N), the higher-harmonic in the response can be observed in 
both representations, Fig.(5b) and Fig.(5d). 

 
3.3. MDOF Undamped System For Impulse Excitation 

 
To obtain the characteristics of the multi-degree-of-freedom, a pulse with duration of the 0,025s, 

smaller than the SDOF system were used, which has gotten enough energy in the range of interest, 
from 0 to 7 Hz. The MDOF system in analysis was showed in the fig (6), and it has got, for linear 
case, natural frequencies equal to f1=0.8, f2= 2.5, f3= 4.2, f4= 5.9 and f5= 6.8 Hz; masses equal to 
m1= 0.4, m2=1, m3=0.6 Kg, m4=1 and m5= 1Kg, stiffness to all elements equal to 315,89 N/m. 

 
Case 1: Linear for force: F=500N. 

 
It the system as linear was considered. One can find in the spectrogram (Fig.(6a)) all the natural 

frequencies of the system, and how the first and the fourth natural frequencies have gotten higher 
amplitudes and the third has gotten the smaller amplitude. The same cannot be found clearly in the 
WVD representation (Fig.(6b)), due to the large quantity of the cross-terms. 

 
 

Figure 6. Time-frequency representations of the MDOF linear system. 
 

Case 2: Nonlinear with µ constant (µ=3 ) and variable force: F=500N; 1000N and 1500N. 

Figure 7. Time-frequency representations of the MDOF nonlinear system with µ constant (µ=3 ) 
and variable force: F=500N; 1000N and 1500N. 
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Three amplitudes to the excitation signal were considered, 500N, 1000N and 1500N, to evaluate 
the characteristic of the MDOF system with a nonlinear spring positioned between the ground and 
the first mass. The impulse excitation was applied on the third mass and the response was obtained 
in the first mass.One can see in the Fig.(7a) some changes when compared to Fig.(6a): (i) the 
energy of the signal is not distributed in a uniform way on the natural frequencies anymore; (ii) 
even undamped the amplitudes of the natural frequencies change with the time. 

When the amplitude of the input increases three times, the spectrogram of the Fig.(7c) shows 
specially that the behavior of the fith natural frequency changes in amplitude and frequency with 
the time. Once again, the WVD representation was difficult to find information on the dynamic 
behavior of the MDOF system, due the cross-terms. 
 
3.4. MDOF Damped System For Periodic Excitation 

 
In this item, the dynamic behaviour of the response of the MDOF system, showed in the 

Fig.(2b), under a single harmonic excitation was analyzed. The excitation was applied on the thrith 
mass and the response it was obtained on the first mass. 

 
Case 1: Nonlinear Case with µ and frequency constant (µ=3 and f=3.5Hz) and amplitude 

variable: Fa=500N and 1500N. 
 

 

Figure 8. Time-frequency representations of the MDOF nonlinear with µ and frequency constant 
(µ=3 and f=3.5Hz) and amplitude variable: Fa=500N and 1500N. 

 
The main point is to analyze the response behavior of the MDOF nonlinear system with µ=3, 

under variable amplitude excitation. One can find in the spectrogram, showed in the Fig.(8a), that 
the system responds with a different frequency of the input. In this case, the excitation frequency is 
3.5Hz and the response frequency is 2Hz. Other important characteristic is that the frequency 
response decreases with the increase of the amplitude of the excitation. 

 
3. CONCLUSIONS 
 

In this paper, we have addressed to analysis of the dynamic behaviors of the Duffing´s 
nonlinearly structural systems by the time-frequency variations of some response signals. For this, 
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two types of time-frequency techniques were used: the spectrogram and the Wigner-Ville 
distribution (WVD). The behavior of the two proposed time-frequency analysis was investigated 
based on the dynamic behavior of two discrete systems. The first is a SDOF nonlinear system, 
showed in Fig.(2a). The second is a MDOF nonlinear system with five degrees of freedom, showed 
in Fig.(2b). In both, the nonlinear effect is due to the nonlinear stiffness force, which is proportional 
to the cube of displacement. The main characteristic of the time-frequency analysis, its main 
advantage and disadvantage are showed, based on many numeric simulations under many dynamic 
conditions. The results obtained show that: (a) the presence of high-harmonics can be identified and 
isolated; (b) the amplitude-frequency dependence of the vibration response can be detected and 
analyzed; (c) the behaviour of the nonlinear systems are amplitude dependent of the input force; (d) 
for the softening spring (µ= -2), in the spectrogram (Fig.(4a)) one can see the relation between 
amplitude-frequency of the response, but one cannot see what this relation is, due to the low 
accuracy of the spectrogram; (e) in Fig.(4d) which represents the Wigner-Ville distribution, one can 
see accurately that the oscillation frequency varies during the decay in a exponential form; (f) the 
spectrogram can analyze the MDOF system satisfactory, but the same not occur with the WVD, due 
to the cross-terms. 
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