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Abstract. The purpose of this work is to investigate the dynamic behavior of simply-supported
rotors in composite material. The shaft is in carbon/epoxy or in glass/epoxy. The finite element
method is used and the rotor is modelled as a beam element with four degrees of freedom to analyse
bending motion and one degree of freedom to analyse torsional motion. An equivalent Young's
modulus and a damped equivalent Young's modulus is used to represent the composite materials
proprieties. It is observed the influence of the wounding angle on the prediction of the natural
frequencies as a function of the rotation of the rotor as well as the response to an unbalance mass.
The optimal position of critical speeds was determined by using an optimization technique
considering the wounding angle, the stiffness of the bearings and the position of the disk as design
variables.
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1. INTRODUCTION

Rotordynamic problems have been exhaustingly studied for several decades for the case in
which the shaft is in isotropic material Zorzi et al. (1977), Özgüven et al. (1984), Melanson et al.
(1998), Ku et al. (1998). The problems most frequently analysed involve response to an excitacion
and stability of the rotor, Pereira et al. (2000). Sometimes it is used optimization techniques to
search an optimal design of the machine using as parameters: the stiffness of the bearing, the
geometric proprieties and position of the compounds, Steffen et al. (1987) and Pereira et al. (2001).

The reason for introducing composite materials in rotordynamics is the anisotropy of the
materials and the high capacity of damping, Wettergren (1996), Gupta et al. (1998) and Silveira
(2001). The first propriety of the composite materials can be used in a convenient way in order to
take a critical speed far from the working speed. The second propriety can be used in order to
reduce the amplitude of vibration when passing through one critical speed. Nevertheless, this
propriety should be used with care to avoid instability regions, Pereira et al. (2000). As observed in
an experimental measurements the internal damping is not viscous but hysteretic, nevertheless the
internal damping can be treated as a viscous damping by using an equivalence between the energy
dissipated by both mechanisms, Singh et al. (1994).
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In this work we purposed to investigate the behavior of composite rotors using the finite element
method. The shaft is obtained by winding several plies of embbebed fibers over a mandrel. The
Euler-Bernoulli beam with five degrees of freedom is used to represent bending and torsional
modes. The disks are supposed to be rigids and the assembly is supported by flexible bearings. An
equivalent modulus approach is used in order to represent the orthotropic proprieties of the
composite shaft. The effect of the damping in composite materials is made by introducting a model
proposed by Adams et al. (1973). The strain stress relation that include the internal damping on the
strain energy in bending developed in Silveira (2001) is used. It will be shown the effect of the
wounding angle on the natural frequencies and on the response to an excitacion for rotors in
bending and in torsion, and the effect of the wounding angle on the stability for rotors in bending. It
will be also shown how the wounding angle can be used as a parameters in order to search an
optimal design.

2. THE FINITE ELEMENT MODEL

The finite element model of a rotor is composed by beam elements and rigid elements to
represent the shaft and the disks respectively. The rotor is supposed to be simple-supported and the
wounding angle of each layer of the shaft is ϕ.

As shown by Lalanne et al. (1998), the kinetic energy of a disk can be expressed by:
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and the kinetic energy of a disk in torsion as:
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where MD is the mass of the disk, u and w are the coordinates of the center of inertia of the disk on
the inertial axes, IDx and IDy are the moments on the principal directions of inertia, Φ is the torsional
angle. The rotation speed of rotor is Ω and ψ&  and θ&  are instantaneous velocities.

For an element of the shaft, the kinetic energy in bending can be expressed by:
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and for the shaft in torsion, the kinetic energy can be given as:
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where ρ is the volumetric mass, S is the area of the cross section, Ixx is the inertia moment of the
cross section, J is the inertia polar moment and L is the lenght of the element.

The general expression for the strain energy of the shaft in bending is:
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As proposed by Silveira (2001), the stress-strain relation for a composite beam, including the
effect of hysteretic damping can be given as:
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where eqE  is the equivalent Young’s modulus and eqEψ  is the equivalent damped Young’s modulus.

Considering small deformations, the longitudinal strain and the longitudinal strain rate can be
expressed as:
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where u* and w* are displacements of the geometric center measured on the rotating axes of the
shaft, Lalanne et al. (1998). Considering the relation between the displacements u* and w* and the
displacements u and w, and using Eqs. (5)-(6), we obtain the strain energy in bending:
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The second term and the third term of Eq. (6) are related to the hysteretic damping named [Hb]
and [Hc]. The equivalence between the hysteretic damping and the viscous damping is made by:
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where [w] is the diagonal frequencies matrix.
For the shaft in torsion, the expression for the strain energy can be written as:
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Similarly at Eq. (6), the shear stress can be given as:
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where eqG  is the equivalent shear modulus and eqGψ  is the equivalent damped shear modulus.

Substituting Eq. (11) into Eq. (10), we obtain the strain energy for the shaft in torsion as being:
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where the second term represents the dissipassion matrix of the element in torsion.
The equation of motion of the rotor is obtained by applying Lagrange’s equations, on the kinetic

energy and on the strain energy of the elements, and can be written as:
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where [M], [G] and [K] are global mass, global Coriolis and global stiffness matrices. [Kb] and [Kc]
are global dissipation matrix and global circulation matrix. Vectors { }u&& , { }u& , and { }u  are nodal

acceleration, nodal velocity and nodal displacement respectively and {F} is the generalised force



vector due to the unbalanced mass. The elementaries matrices are obtained according to the Euler-
Bernoulli equation for beams and are presented in Zorzi et al. (1977) and Silveira (2001).

3. The equivalent modulus and the internal damping model

Considering that the shaft is thin walled and slender, and the laminate is symmetric and
balanced, the equivalent Young’s modulus and the equivalent shear modulus is found as:
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where U1-5 are the laminate invariants and, Tsai et al. (1980):
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where hk is the thickness of layer k, h is the laminate thickness and kϕ  the wounding angle.
On the prediction of damping on multi-layer shell structures the model proposed by Adams in

1973 is used and the specific damping capacity is defined as:
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From Eq. (5) and Eq. (16) and assuming plane stress state, the dissipative energy for a single
layer of unidirectionally fiber on the orthotropic axis is:
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where [ ]ψ  is the specific damping capacity matrix in the form:
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and ψ11, ψ22, ψ12 are the specific damping capacities of a layer on longitudinal, transverse and shear
direction. From Eq. (17) and considering the constitutive relation, we obtain:

 
1

{ } [ ][ ]{ }
2

t

V

U Q dVε ψ ε∆ = ∫               (19)

Using the same procedure to derive Eeq and eqG , the equivalent damped Young’s modulus eqEψ

and the equivalent damped shear modulus eqGψ  are determined from Eq. (19) as being a function of

the specific damping capacities.

4. THE RESPONSE TO AN EXCITATION

The more commom source of synchronous excitation is an unbalance mass mu situated at a
distance d from the geometric center of the shaft. The general equation of the rotor with this
excitation become, Lalanne et al. (1998):
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where {f1} and {f2} are related to mu, d and Ω 2, and [m], [c] and [k] are the modal matrices obtained
from Eq. (13) by using the pseudo-modal method. Solutions for this problem are sought as:
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and the identification of the terms in sinΩ t and cosΩ t gives the equation:
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The system of the Eq. (22) is solved and the unbalance response is determined for any values of
Ω. The response to an unsynchronous excitation is solved on this same way where the frequency of
the excitation is sΩ for s≠1.

5. INSTABILITY IN ROTORDYNAMICS

The natural frequencies and the zones of instability can be determined from the solution of the
eigenvalue problem as a result of the homogeneous equation:
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where [m], [c] and [k] are modal matrices obtained from Eq. (13) by using the pseudo-modal
method, Lalanne et al. (1998). Solutions for this problem are sought as:
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Substituting Eq. (24) in the Eq. (23) we obtain:
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Equation (25) can be rearranged as follow:
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where [I] is the identity matrix. The eigenvectors of Eq. (26) are obtained in the complex form:

{ } { } { }r iλ ω= ± (27)

where {ω} is the natural frequencies vector and {λ} is the vector that determine the stability.

6. APPLICATION

Firstly, it will be shown the influence of the wounding angle on the behavior of composite
rotors: on the natural frequencies as well on the response to a synchronous excitation for a rotor



supported by isotropic bearings. In this case, the rotor is composed by a wounding shaft, two disks
equidistants from the ends and the assembly is supported by flexible bearings, Fig. (1).

The wounding shaft has length of 1.2m, inner radius of 0.04m, outer radius of 0.048m, with
eight plies of 0.001m thickness in a balanced and symmetric configuration such as [±ϕ]s. The disks
have inner radius of 0.048m, outer radius of 0.15m and thickness of 0.05m. The stiffness of the
bearings are Kxx = Kzz = 107N/m. A mass of 10-4kg was placed at 0.15m from the center of the first
disk and the response is taken on the node corresponding to the first disk. The material data are
given in Tab.(1).

Figure 1. Rotor in wounding shaft with two disks.

Table 1. Material data of the shaft and the disks.

E1 (GPa) E2 (GPa) G12 (GPa) ρ (kg/m3) ψ11 (%) ψ22 (%) ψ12 (%) ν12

 Shaft (carbon/epoxy) 172.7 7.20 3.76 1446.2 0.45 4.22 7.05 0.3
 Shaft (glass/epoxy) 37.78 10.90 4.91 1813.9 0.87 5.05 6.91 0.3
 Disks (steel) - - - 7800 - - - -

Figures (2a), (2b) and (2c) show the influence of the wounding angle on the position of the
natural frequencies, as well as the influence of the internal damping on the instability regions for
rotors in carbon/epoxy supported by isotropic bearings. In all figures, the legend is as follow: ---
synchronous exicitation;   stable natural frequency;      unstable natural frequency;        response
to an unbalance mass. As it can be noted, as higher is the wounding angle, lower is the equivalent
stiffness of the shaft and consequently, lower is the natural frequency. According to others authors
that has used shaft in conventional material, Zorzi et al. (1977), the instability begin also at the first
critical speed. Anisotropic bearings, coupled terms and external damping can change quite the
threshold speed of instability, Pereira et. al. (2000).
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Figure 2. Campbell diagram and response to an unbalance mass for rotor supported by isotropic
bearings with (a) ϕ = 15º ; (b) ϕ = 45º.
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Figure 2c. Campbell diagram and response to an unbalance mass for rotor supported by isotropic
bearings and ϕ = 75º.

Figure (3) shows the influence of the wouding angle on the first two vibration modes for a rotor
in carbon/epoxy supported by isotropic bearings. It can be seen that the wounding angle can affect
considerably the vibration mode, and consequently, the influence of the external damping on the
rotor. For lower wounding angles, the equivalent stiffness is higher, and consequently the influence
of the bearings on the behavior of the rotor is more pronounced.
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Figure 3. (a) First vibration mode and (b) second vibration mode for rotor in carbon/epoxy.

Figures (4) and (5) show the Campbell diagram for torsional modes as well as the response on
frequency for a rotor in carbon/epoxy submitted to a torque in a form: Tr = Tconstant + Tcos(Ωt). The
maximum stiffness in torsion and consequently the maximum frequency in torsion is for ϕ = 45º. In
this model, the internal damping causes no instability on the rotor but can reduce considerably the
amplitude of vibration.
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Figure 4. Campbell diagram for torsional modes for rotors in carbon/epoxy.
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Figure 5. Response on frequency for torsional modes for rotors in carbon/epoxy, (a) without internal
damping; (b) including internal damping

7. OPTIMIZATION OF THE NATURAL FREQUENCIES

A non-linear unconstrained optimization technique was used to determine the optimal position
of the natural frequencies. In an analogous way as used by Steffen et al. (1987), the goal was to
increase the distance between the first and the second critical speed, at a constant rotation Ω =
8000rpm. It was used the Quasi-Newton method, in which the approach of the Hessian is made by
the BFGS, Arora (1989), and the gradient of the objective function was determined by the forward
finite difference.

The problem of optimization was formulated as follow:

Max ω(4) - ω(2)
15º ≤  ϕ1 ≤ 75º
15º ≤  ϕ2 ≤ 75º
1.106 ≤ Kxx ≤ 1.107

1.106 ≤ Kzz ≤ 1.107

(a) (b)



0.2 ≤ yc ≤ 0.4

where yc is the position of the disk on the shaft.
The rotor is composed now with only one disk, located at 0.33m of the left end. The wounding

shaft has lenght of 1m, inner radius of 0.031m, outer radius of 0.039m, with eight lies of 0.001m
thickness in a balanced and symmetric configuration, such as [±ϕ1, ±ϕ2]s. The disk has inner radius
of 0.039m, outer radius of  0.15m and thickness of 0.03m.

The initial and optimal configurations for rotors in carbon/epoxy and in glass/epoxy are shown
in Tab. (3) and the results plotted on Fig. (8). For both carbon/epoxy and glass/epoxy shafts, it can
be observed that the optimal configuration is for the case when the bearings are on the upper limit
of the stiffness.

Table 3. Initial and optimal configurations of the rotor.

ϕ1 ϕ2 Kxx (MPa) Kzz (MPa) yc (m)
Initial configuration
(carbon/epoxy and glass/epoxy)

30.0º 30.0º 5.106 5.106 0.333

Optimal configuration (carbon/epoxy) 15.0º 15.0º 1.107 1.107 0.4
Optimal configuration (glass/epoxy) 15.0º 15.0º 1.107 1.107 0.4
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Figure 8. Initial and optimal Campbell diagram for a rotor in (a) carbon/epoxy and (b) glass/epoxy.

8. CONCLUSION

In this work it was investigated the effect of the wounding angle on the behavior of
carbon/epoxy and glass/epoxy rotors. Bending modes and torsional modes were analysed
considering different rotordynamic problems. We can conclude that composite materials can be
used in shaft of rotors in advantage in comparasion the conventional materials.  Considering the
stability of the system, we can conclude that the internal damping offered by the composite
materials to the rotors should be used with care if we consider the stability, nevertheless, the
internal damping associated with others parameters can be explored in rotordynamics analysis in
order to search the optimal design.
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