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Abstract. This work deals with the solution of the heat and mass transfer problem during drying of
capillary porous media. The physical problem considered here is described by the linear Luikov's
equations in cylindrical coordinates. The two-dimensional problem is solved with the Generalized
Integral Transform Technique (GITT). This is a powerful hybrid numerical-analytical approach,
which has been successfully used for the solution of different classes of problems. The convergence
of the series-solutions for the problemis addressed in the paper, for different radial Biot numbers.
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1. INTRODUCTION

The phenomena of heat and mass transfer in capillary porous media has practical applications
in several different areas including, among others, drying and the study of moisture migration in
soils and construction materials. For the mathematical modeling of such phenomena, Luikov (1966)
has proposed his widely known formulation, based on a system of coupled partial differential
equations, which takes into account the effects of the temperature gradient on the moisture
migration.

Different approaches have been used for the solution of Luikov’s equations in one-dimensional
and multi-dimensional problems (Comini and Lewis, 1976, Mikhailov and Ozisik, 1984, Lobo et
al., 1987, Lobo et a., 1995, Guigon et al., 1999, Ribeiro et a., 1993, Cotta, 1993, Ribeiro and
Cotta, 1995, Ribeiro and Lobo, 1998, Duarte and Ribeiro, 1998). The use of the Generalized
Integral Transform Techniqgue with simple eigenvalue problems involving analytica
eigenfunctions, can avoid the calculation of complex eigenvalues for the drying problem based on
Luikov’s formulation. For more details on the use of such hybrid numerical-analytical technique,
the reader is referred to the works of Ribeiro et a. (1993), Cotta (1993), Ribeiro and Cotta (1995)
and Ribeiro and Lobo (1998).


CONEM UFPB



In this paper we examine the solution of a two-dimensional drying problem in cylindrical
coordinates. The coupled heat and mass transfer in the capillary-porous body is formulated with
Luikov’s equations. The resulting two-dimensional problem is solved with the Generalized Integral
Transform Technique (GITT) and the convergence of the series-solutions for the problem is
examined, as described next.

2.PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

The physical problem under picture in this work involves a cylindrical capillary porous
medium of radius Ry and length |, initially at uniform temperature and uniform moisture content.
One of the boundaries, which isimpervious to moisture transfer, is put in contact with a heater. The
other boundary is put in contact with the dry surrounding air, thus resulting in a convective
boundary condition for both the temperature and the moisture content. The lateral surface of the
cylinder is also supposed to be impervious to mass transfer, but heat losses at this boundary are
taken into account through a convective boundary condition. The linear system of equations
proposed by Luikov (1966), for the modeling of such physical problem involving the drying of a
capillary porous media, can be written in dimensionless form as (Luikov, 1966, Mikhailov and
Ozisik, 1984, Cotta, 1993, Ribeiro, 1993, Ribeiro and Lobo, 1998):

08(R,Z 1) :GOZG(R,Z,T)_BOZ(p(R,Z,T)+ a9 {Rae(R,z,r)}_r;B Kl {Ra(p(R,Z,r)}
ot 0Z° 0Z° R 4R dR R OR oR

0g(R.Z,T) _ L ’¢(RZ,1) _ LuPn 0’8(RZ,1),

ot 9z* 0z°
JTalu g [Ra(p(R,Z,T)} _r7LuPn 8 {Rae(R,z,r)}
R 0R oR R 0R oR
in 0<R<1 and 0<Z<1, for >0 (Lab)
B(R,Z,O) =40) q)(R,Z ,o) =0 for =0, in 0<R<1 and 0<Z<1 (1.cd)
06(0,2.1) _ , 0¢(0.2.1) _ 0, at R=0and Zz=0for 7>0 (Lef)
R R
59((13,5 1) g L, [1-61,2,1)] =0, at R=1and 0<z<1 for 7>0 (19)
04(L2.1) _ p,,900.2,1) at R=1 and 0<Z<1 for >0 (Lh)
R R
% ~ Bi,[1-8(RLT)] +(1-&)KoLuBi, [1-g(RLT)] =0,
5¢((';Zlﬂ) +Bi, @(RL1) = Bi;, — PnBi [8(R11)-1], at Z=1 and 0<R<L, for 7>0 (L)

The various dimensionless groups appearing above are defined as
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where a is the thermal diffusivity of the porous medium, a, is the moisture diffusivity in the porous
medium, c is the specific heat of porous medium, h and h, are the heat transfer coefficients at the
top and lateral surfaces, respectively, h, is the mass transfer coefficient, k is the thermal
conductivity, ky, is the moisture conductivity, q is the prescribed heat flux, A is the latent heat of
evaporation of water, T is the temperature of the surrounding air, T, is the uniform initial
temperature in the medium, us is the moisture content of the surrounding air, u, is the uniform initial
moisture content in the medium, & is the thermogradient coefficient and ¢ is the phase conversion
factor. Lu, Pn and Ko denote the Luikov, Posnov and Kossovitch numbers, respectively.

3. SOLUTION OF THE PROBLEM
We use in this work the GITT for the solution of the two-dimensional problem (1). In order to
reduce the effects on the convergence of the series solution of the non-homogeneities aong the

axial direction and assuming that the heat losses through the lateral surface at R=1 are small, we
filter problem (1) by writing its solution as
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where the filtering solutions are obtained from the following steady-state problem
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By substituting equations (3.a,b) into equations (1) and using equations (4), we obtain the
filetered problem as:
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The following eigenvalue problems are used in order to define the integral transform/inverse

formula pairs for temperature:
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Similarly, the following eigenvalue problems are used for the moisture content:
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The eigenfunctions, normalization integrals and transcendental equations for the
determination of the eigenvalues are given by:
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The integra transform/ inverse formula pairs for temperature and moisture content are defined,
respectively, as
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The integral transformation of problem (6) results on the following system of coupled ordinary
differential equations:
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The solution for the system (17), truncated to a sufficiently large order to reach convergence, is
obtained with the subroutine DIVPAG of the IMSL (1987). Then, the temperature and moisture
content along the axial direction can be computed by using the following expressions, derived with
an integral balance approach (Cotta, 1993):
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4. RESULTS AND DISCUSSION

The solution via GITT of the two-dimensional problem given by Egs. (1) is now examined.
Tables 1 and 2 show the results for Big = 0, as well as the converged one-dimensional solution
viaGITT (Guigon et al, 1999), for the temperature and moisture content at the axial positions
Z=0.1, 0.5 and 0.9, for 7= 0.2 and 7 = 0.5, respectively. Other parameters of importance for the
analysis were taken as: Lu=0.4, Pn=0.6, Ko=5.0, Bi;=Bi=2.5, £=0.2, Q=0.9 and r,=1. The radid
position was taken as R=0.5. The 2D solution was obtained by using 500 terms in each summation
appearing in equations (19.a,b) in the axia direction and NR=2 in the radial direction. We note in
Tables 1 and 2 that the two-dimensional problem isin very good agreement with the 1D solution for
Bigr=0.

Table 1 — Comparison of 1D and 2D solutions for Big = 0.0, R=0.5 and 7= 0.2.

O(RZ1) ¢(RZ 1)
Solution 2D 1D 2D 1D
z=01 | 02694 | 02690 | 00770 | 0.0772
z=05 | 0.0279 | 00275 | 00501 | 0.0506
Z=0.9 | -0.0228 | -0.0232 | 03324 | 0.3328




Table 2 — Comparison of 1D and 2D solutions for Big = 0.0, R=0.5and 7= 0.5

6(RZ,1) ¢(RZ,1)
Solution 2D 1D 2D 1D
Z=0.1 0.4755 0.4752 0.1963 0.1967
Z=0.5 0.2562 0.2560 0.1924 0.1928
Z=0.9 0.2267 0.2264 0.4780 0.4781

Tables 3 and 4 illustrate the convergence of the solution with respect to the number of terms
retained in the summations appearing in equations (19), at the radial position R=0.9, for different
axial positions and for 7=0.2 and 7= 0.5, respectively. Similar results are shown in tables 5, 6 and 7,
8, for Big = 1 and 10, respectively. We can notice in Tables 3-8 that, for the different radia heat
transfer coefficients examined, the solutions are converged to at least 3 significant digits, even for a
small dimensionless time such as =0.2. However, for a very low number of terms such as N=30,
the solution is converged to 2 decima places. The CPU time for the solution obtained with N=30
was around 40 seconds, while the solution with N=150 took about 24 hours. Therefore, quite
accurate solution for engineering purposes can be obtained with N=30 and with a small CPU time.
The accuracy of the solution can be greatly improved by increasing the number of terms to N=150,
but increasing the CPU time too. For the cases shown in Tables 3-8 we have used NR=10.

Table 3 — Convergence behavior of moisture content and temperature Big,=0.1, 7=0.2 and R=0.9.
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Table 4 — Convergence behavior of moisture content and temperature Big = 0.1, 7= 0.5 and R=0.9.
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Table 5 — Convergence behavior of moisture content and temperature Big = 1, T = 0.2 and R=0.5.

g(RZ,17) P(RZ17)

N 30 60 90 120 150 30 60 90 120 150

Z=0.1 |0.8334 |0.8262 |0.8239 |0.8227 |0.8220 |-0.0735|-0.0669 |-0.0648 |-0.0637 | -0.0630

Z=0.5 [0.4789 |0.4722 |0.4700 |0.4689 |0.4683 |-0.0733|-0.0671 |-0.0650 |-0.0640 |-0.0634

Z=0.9 [0.1621 |0.1559 [0.1538 |0.1528 |0.1522 |0.2693 |0.2738 [0.2753 |0.2760 |0.2765

Table 6 — Convergence behavior of moisture content and temperature Big, = 1, 7= 0.5 and R=0.5.

Q(R,Z, Z) w(R’Z’ Z)
N 30 60 90 120 150 30 60 90 120 150

Z=0.1 |1.1797 |1.1744 [1.1726 |1.1718 |1.1712 |0.1292 |0.1339 |0.1354 |0.1362 |0.1366
Z=0.5 |0.8214 |0.8159 [0.8141 |0.8132 |0.8130 [0.1340 |0.1381 |0.1394 |0.1401 |0.1405
Z=0.9 |0.4684 |0.4625 [0.4605 |0.4596 |0.4590 |0.4218 |0.4243 |0.4251 |0.4255 |0.4257

Table 7 — Convergence behavior of moisture content and temperature Big, = 10, 7= 0.2 and R=0.5.

g(RZ,17) P(RZ17)

N 30 60 90 120 150 30 60 90 120 150

Z=0.1 |5.0219 |5.0134 [5.0106 |5.0092 |5.0089 |-0.2335|-0.2276 |-0.2256 |-0.2247 |-0.2244

Z=0.5 |3.5789 |3.5707 |3.5679 |3.5666 |3.5663 |-0.2074|-0.2018|-0.1999 -0.1991|-0.1987

Z=0.9 |1.0185 |1.0105 [1.0079 |1.0066 |1.0063 |0.1843 |0.1883 |0.1896 |0.1903 |0.1904

Table 8 — Convergence behavior of moisture content and temperature Big = 10, 7= 0.5 and R=0.5.

(RZ,1) p(RZ1)
N 30 60 90 120 150 30 60 90 120 150

Z=0.1 |5.3283 |5.3215 [5.3192 |5.3182 |5.3179 |0.0781 |0.0822 |0.0836 |0.0842 |0.0844
Z=0.5 |3.8772 |3.8704 |3.8681 |3.8670 |3.8668 |0.0909 |0.0945 |0.0957 |0.0963 |0.0964
Z=0.9 |1.2879 |1.2808 [1.2784 |1.2772 |1.2770 |0.3762 |0.3785 |0.3792 |0.3796 |0.3797

5. CONCLUSIONS

In this paper we presented the solution of the two-dimensional linear Luikov’'s equations in
cylindrical coordinates. The drying cylindrical body is heated from the bottom boundary, while the
top boundary is open to the surrounding air, resulting on a convective boundary condition for both
heat and mass transfer. The lateral surface of the body is impervious to mass transfer, but heat can
be lost by convection to the surroundings.



The solution for such a problem was obtained with the Generalized Integral Transform
Technique. The solution for the case involving an adiabatic lateral surface was in very good
agreement with one-dimensional results previously obtained with the same technique. The
convergence of the series-solutions for the problem was examined for different radial Biot numbers.
For the cases examined, involving Big = 0.1, 1 and 10, the solution was converged within an
accuracy of 4 significant digits, with N=150 terms in each summation in the axia direction and
NR=10 terms in each summation in the radia direction. We are now examining physical aspects of
the solution, as well as the effects of other parameters of importance for the physical processes
involved, such asthe Luikov, Kossovich and Posnov’ s numbers, as well as the cylinder aspect ratio.
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