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Abstract. .The present work investigates the efficiency of the multigrid numerical method applied to 
solve two-dimensional turbulent velocity and temperature fields inside a rectangular domain. 
Numerical analysis is based on the finite volume discretization scheme applied to structure 
orthogonal regular meshes. Performance of the correction storage (CS) multigrid algorithm is 
compared for different inlet Reynolds number and number of grids. Up to four grids were used for 
both V- and W- cycles. Simultaneous and uncoupled temperature-velocity solution schemes were 
also applied.. Advantages in using  more than one grid is discussed. Results further indicate an 
increase in the computational effort for higher Rein and an optimal number of relaxation sweeps for 
both V- and W-cycles. 
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1. INTRODUCTION 
 
 In most iterative numerical solutions, convergence rates of single-grid calculations are greatest in 
the beginning of the process, slowing down as the iterative process goes on. Effects like those get 
more pronounced as the grid becomes finer. Large grid sizes, however, are often needed when 
resolving small recirculating regions or detecting high heat transfer spots. The reason for this hard-
to-converge behavior is that iterative methods can efficiently smooth out only those Fourier error 
components of wavelengths smaller than or comparable to the grid size. In contrast, multigrid 
methods aims to cover a broader range of wavelengths through relaxation on more than one grid. 
 The number of iterations and convergence criterion in each step along consecutive grid levels 
visited by the algorithm determines the cycling strategy, usually a V- or W-cycle. Within each 
cycle, the intermediate solution is relaxed before (pre-) and after (post-smoothing) the 
transportation of values to coarser (restriction) or to finer (prolongation) grids (Brandt, 1977, 
Stüben & Trottenberg, 1982, Hackbusch, 1985). 
 Accordingly, multigrid methods can be roughly classified into two major categories. In the CS 
formulation, algebraic equations are solved for the corrections of the variables whereas, in the full 
approximation storage (FAS) scheme, the variables themselves are handled in all grid levels. It has 
been pointed out in the literature that the application of the CS formulation is recommended for the 
solution of linear problems being the FAS formulation more suitable to non-linear cases (Brandt, 
1977, Stüben & Trottenberg, 1982, Hackbusch, 1985). An exception to this rule seems to be the 
work of Jiang, et al, (1991), who reported predictions for the Navier-Stokes equations successfully 
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applying the multigrid CS formulation. In the literature, however, not too many attempts in solving 
non-linear problems with multigrid linear operators are found. 
 Acknowledging the advantages of using multiple grids, Rabi & de Lemos, 1998a, presented 
numerical computations applying this technique to recirculating flows in several geometries of 
engineering interest. There, the correction storage (CS) formulation was applied to non-linear 
problems. Later, Rabi & de Lemos, 1998b, 2001, analyzed the effect of Peclet number and the use 
of different solution cycles when solving the temperature field within flows with a given velocity 
distribution. In all those cases, the advantages in using more than one grid in iterative solution was 
confirmed, futhermore, de Lemos & Mesquita, 1999, introduced the solution of the energy equation 
in their multigrid algorithm. Temperature distribution was calculated solving the whole equation set 
together with the flow field as well as uncoupling the momentum and energy equations. A study on 
optimal relaxation parameters was there reported. 
 More recently Mesquita & De Lemos, 2000a, 2000b analyzed the influence of the increase of 
points of the mesh and optimal values of the parameters of the Multigrid cycle for different 
geometrias. 

 The present contribution extends the early work on CS multigrid methods to the solution of 
energy equation. More specifically, heated steady-state Turbulent flows in a heated tank are 
calculated with up to 3 grids. A schematic of such configurations is show in Figure 1 . 

  
2. ANALYSIS   
 

2.1.  Governing Equations and Numerics  
 

Governing Equations The continuity, Navier-Stokes and energy equations describe fluid flow 
and heat transfer. They express mass, momentum and energy conservation principles respectively 
and, for a steady state condition in a two-dimension Cartesian coordinate frame, they written as: 
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Figure 1 - Geometries and boundary conditions for heated tank flow 



 

where ρ is fluid density, U and V are the x and y velocity components, respectively, T is the 
temperature, µ is the dynamic viscosity and Pr is the Prandtl number. ` 

The modeled transport equations for the turbulent kinetic energy k, and its dissipation rate ε, 
respectively, are given by: 
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The symbols kP and tµ , respectively, represent the turbulence kinetic energy production rate and 
eddy viscosity, which are defined as: 
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Numerical Model The solution domain is divide into a number of rectangular control volumes 
(CV), resulting in a structure orthogonal non-uniform mesh. Grid points are locate according to a 
cell-centered scheme and velocities are store in a collocated arrangement (Patankar, 1980). A 
typical CV with its main dimensions and internodal distances is sketched in Figure 2. Writing 
equations (1)-(7) in terms of a general form 
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where φstands for U, V, T, k or ε. The exchange coefficients φΓ and source terms φS for turbulent 
flow are compilated in Table 1. For the laminar flow the eddy viscosity and the turbulent Prantdl 
number are replaced by the corresponding molecular values, the k and ε-transport equations need 
not be solved. 
Integrating the equation (9) over the control volume of Figure 2, 
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Integration of three terms in (10), namely: convection, diffusion and source , lead to a set of 
algebraic equations. These practices are described elsewhere (e.g Patankar, 1980) and for this 
reason they not repeated here. In summary, convective terms are discretized using the upwind 
differencing scheme(UDS), diffusive fluxes make use of the central differencing scheme  



  

 
 

Table 1 – Coefficients in the general transport equation (9). 
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Substitution of all approximate expressions for interface values and gradients into the integrated 
transport equation (10), gives the final discretization equation for grid node P 
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with the east face coefficient, for example, being define as 
 

[ ] eeE DCa +−= 0,max  (12) 

In (12) eyee xD ∆= /δµ and ( ) yee UC δρ= are the diffusive and convective fluxes at the CV east 
face, respectively, and , as usual, the operator max[a,b] returns the greater of a and b. 
 

  

 
 

Figure 2 - Control Volume for Discretization 



 

2.2. Multigrid Technique  
 

Assembling equation (11) for each control volume of Figure 2 in the domain of Figure 1 defines a 
linear algebraic equation system of the form, 
 

kkk bTA =  (13) 

 
where Ak is the matrix of coefficients, Tk is the vector of unknowns and bk is the vector 
accommodating source and extra terms. Subscript “k” refers to the grid level, with k=1 
corresponding to the coarsest grid and k=M to the finest mesh. 
defined as 
 As mentioned, multigrid is here implemented in a correction storage formulation (CS) in which 
one seeks coarse grid approximations for the correction defined as *

kkk TT −=δ where *
kT  is an 

intermediate value resulting from a small number of iterations applied to (13). For a linear problem, 
one shows that δk is the solution of (Brandt, 1977, Stüben & Trottenberg, 1982, Hackbusch, 1985), 
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where the residue is defined as 
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Eq. (10) can be approximated by means of a coarse-grid equation, 
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with the restriction operator 1k

k
−I  used to obtain 
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 The residue restriction is accomplished by summing up the residues corresponding to the four 
fine grid control volumes that compose the coarse grid cell. Thus, equation (17) can be rewritten as, 
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Diffusive and convection coefficients in matrix Ak need also to be evaluated when changing grid 
level. Diffusive terms are recalculated since they depend upon neighbor grid node distances 
whereas coarse grid mass fluxes (convective terms) are simply added up at control volume faces. 
This operation , is commonly found in the literature (Peric, et al, 1989, Hortmann et al, 1990). 
 Once the coarse grid approximation for the correction 1k−δ  has been calculated, the 
prolongation operator k

1k −I  takes it back to the fine grid as 
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In order to update the intermediate value 
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 Figure 3 illustrates a 4-grid iteration scheme for both the V- and W-cycles where the different 
operations are: s=smoothing, r=restriction, cg=coarsest grid iteration and p=prolongation. Also, 
the number of domain sweeps before and after grid change is denoted by νpre and νpost, respectively. 
In addition, at the coarsest k level (k=1), the grid is swept νcg times by the error smoothing operator. 

 

 
  

3. RESULTS AND DISCUSSION  
 
 The computer code developed was run on a IBM PC machine with a Pentium III 500MHz 
processor. Grid independence studies were conducted such that the solutions presented herein are 
essentially grid independent. For both V- cycles, pre- and post-smoothing iterations were 
accomplished via the Gauss-Seidel algorithm while, at the coarsest-grid, the TDMA method has 
been applied (Patankar, 1980). Also, the geometry of Figure 1 was run with the finest grid having 
sizes of 66x66 grid points. 
 Figure 4 shows non-dimensional temperature distribution patterns for flow in the heated tank 
flow of Figure 1. All walls are kept at the same temperature, higher than the incoming flow 
temperature. The figure indicates the effect of increasing the inlet Reynolds number, 
Rein=ρUinLin/µ, where the subscript "in" refers to inlet values. One can clearly see the penetration of 
the cooler fluid as Rein increases. 

 

 

Figure 3 - Sequence of operations in a 4-grid iteration: (a) V-cycle; (b) W-cycle. 

  
 a) Rein = 6   b) Rein  = 60   c) Rein  = 600     d) Rein =  6000 

Figure 4 - Temperature distribution patterns for flow in the heated tank flow 



 

Residues. The residue is normalized and calculated according to 
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where subscript ij identifies a given control volume on the finest grid and nb refers to its 
neighboring control volumes. 
 Figures 5 and 6 show the Turbulent kinetic energy  and Dissipation of turbulent energy  fields 
for turbulent flow for Rein  =  6000 and 60.000 respectively .One can see the effect of Re on the 
turbulent field. 

Figure 7 shows residue history for the heated tank case. The solution follows a simultaneous 
approach in the sense that the temperature is always relaxed after the flow field, within the 
multigrid cycle. One can readily notice that for lower Rein, regardless of the number of grids used, 
faster solutions are obtained. In this case, relative importance of diffusion term favors the stability 
of the system of equations. Increasing the number of grids for the same Reynolds number is also 
advantageous. This feature is what makes multigrid methods attractive, justifying their growing 
usage. However, it is also interesting to note that the computational effort related to value transfers 
among too many grids became relevant. In the figure, computational savings decrease as the 
number of grids increases. 
 

  
  a)    b)  

Figure 5 - Turbulent kinetic energy (a) and Dissipation of turbulent energy (b) fields for turbulent flow for Rein = 
6000  

  
a) b) 
 

Figure 6 - Turbulent kinetic energy (a) and Dissipation of turbulent energy (b) fields for turbulent flow for Rein = 
60000 



  

  Figure 8 presents residue history for the energy equation for the two situations considered, 
namely the simultaneous multigrid solution for velocity and temperature and the sole solution of the 
energy equation, given the flow field. As expected, the number of iterations needed in the latter case 
is lower, being nearly one order of magnitude less than in the former. Consequently, the advantage 
in using multiple grids is felt stronger in simultaneous solutions where overall computing time are 
greater. 

Figure 9 reproduces the necessary time to convergence when the number of pre- and post-
smoothing iterations was allowed to vary, keeping νpre=νpost. One can see that more than one sweep 
for relaxing the intermediate solution, before and after grid change, brings no advantage to the 
algorithm performance and, consequently, further relaxation past this limit unnecessarily increases 
the computational effort. The advantage in using W-cycles is also apparent. When inspecting Figure  
one can see that, within a W cycle, the time spent per cycle on coarse grids is, on the average, 
greater than in V-cycles. Consequently, low frequency errors are more efficiently swept off (Rabi & 
de Lemos, 1998b). In addition, for the two values of νcg used (7 and 10), no detectable savings in 
computational time, for both cycles, are seen. That raises the question of how the value of νcg 
affects convergence performance as well. 

In Figure 10 the number of pre- and post-smoothing iterations was fixed at νpre=νpost=2 whereas 
the number of coarsest-grid sweeps νcg was free to vary. An optimum situation can be clearly 
identified for both cycles and further relaxation past this limit brings no time savings. Here again 
the superiority of the W-cycle is apparent. 

Ultimately, both Figures 9 and 10 suggest a delicate balance between all parameters involved 
when minimum CPU consumption is sought. Most often, optimal parameters can not be easily 
determined a priori and adaptive strategies have been proposed in the literature. Generally, the ratio 
of residues after two successive sweeps is monitored and used as a criterion for switching grids. 
Hortmann et al, 1990 points out that this practice is preferred for single equation systems but, when 
solving the full equation set as done here, such practice is not easy to implement. In this case, most 
works in the literature specify a fixed number of sweeps, as in the cases here reported 
(Sathyamurthy & Patankar, 1994, Hutchinson et al 1988). 
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Figure 7 - Residue history for different Rein – 
V- cycle. 
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Figure 8 - Effect of field decoupling on residue 
history for temperature equation. 



 

 

4. AKNOWLEDGEMENTS 
 

The authors are thankful to CNPQ, Brazil for their financial support during the course of this 
work. 

1 2 3 4 5 6 7 8

vpre= vpost= number of pre -/post -smoothing iterations

20

25

30

35

40

45

CPU
time (s)

Flow in a heated tank
Decoupled Solution

Grid: 66x66, M=4, Rein=300

vcg=10   V-CYCLE

vcg=7    V-CYCLE

vcg=10   W-CYCLE

vcg=7     W-CYCLE

 

Figure 9 - Influence of the number of pre/post – smoothing iterations on the computational effort 
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Figure 10 - Influence of the number of coarsest-grid iterations on the computational effort 
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