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Abstract. Multigrid methods are known to reduce computational time of iterative solutions and have 
been extensively used in CFD problems. In this paper, a correction storage multigrid formulation 
following a V-cycle strategy is implemented to numerically solve steady-state 2-dimensional 
incompressible laminar recirculating flows. Structured, orthogonal and irregular meshes are used 
to perform finite volume discretization. Pressure-velocity coupling is accomplished through the 
SIMPLE method while the TDMA algorithm relaxes the resulting algebraic equation system. The 
solution method is numerically validated against the results from a laminar flow between parallel 
plates whereas recirculating flow patterns are graphically presented. Advantages of employing 
more than one grid level and of using the CS approach are discussed upon. 
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1. INTRODUCTION 
 

Computational Fluid Dynamics (CFD) has experienced improvements related not only to the 
availability of fast and high memory capacity computers but also to the application of efficient 
iterative methods. Numerical simulation is already incorporated into the solution of engineering 
problems like energy generation processes, environmental phenomena and flight engineering. In 
these problems, fluid flow is present and should be properly described. 

Design and optimization often require accurate results. However, well-refined meshes tend to 
increase the computational effort. Multigrid methods achieve convergence acceleration by iterating 
at a sequence of gradually less refined grids instead of iterating at a single grid. 

Depending on how variables are handled in coarse meshes, i.e., in all meshes but the finest, 
multigrid algorithms may be implemented following two distinct formulations: correction storage 
(CS) and full approximation storage (FAS). In the first formulation, algebraic equations in coarse 
meshes are solved for the corrections of the unknowns. In the other formulation, the unknowns 
themselves are operated in all grid levels. 

Previous works (Hackbusch, 1985; Stüben and Trottenberg, 1982; Brandt, 1977) recommend the 
application of the CS formulation when solving linear problems whereas the FAS formulation is 
more suited for non-linear situations. Nevertheless, Jiang et al. (1991) reported the numerical 
solution of the Navier-Stokes (non-linear) equations using the multigrid CS formulation. 

Motivated by this prior instance, this work applied a multigrid CS-formulation method to solve 
steady-state 2-dimensional incompressible laminar recirculating flows. Actually, it resulted from a 
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preliminary attempt to incorporate a multigrid algorithm to an existing single-grid computational 
program to solve flow problems. The numerical method also included finite volume discretization, 
the SIMPLE pressure-velocity coupling and TDMA iterative relaxation (Patankar, 1980; Patankar 
and Spalding, 1972). 
 
2. MATHEMATICAL MODEL 
 

In this work, no heat transfer is considered. Hence, the fluid flow is governed by the continuity 
and the Navier-Stokes equations. Assuming steady state condition, these set of equations in a 2-
dimension Cartesian coordinate frame are written as (Bird at al., 1960) 
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where  U  and  V  are the velocity vector components and  P  is the pressure. The fluid density  ρ  
and viscosity  µ  are assumed to be constant, so that the continuity equation, Eq. (1), can be handled 
to show that the viscous source terms  sU  and  sV  are both null. Since the resulting momentum 
equations contain similar terms, they can be expressed under a general form, namely, 
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where  φ = U, V  represents the flow variable to be numerically solved,  Γφ = µ  is the corresponding 
diffusive coefficient and  Sφ  contains the pressure gradient, in this case. 
 
3. NUMERICAL METHOD DESCRIPTION 
 
3.1. Finite Volume Discretization 
 

Each solution domain was divided into rectangular different-sized control volumes (CVs), 
assembling a structured orthogonal non-uniform mesh. Grid points were located according to a cell-
centered scheme and variables were stored in a collocated arrangement (Patankar, 1980). A typical 
CV is sketched in Fig. (1). Discretization was accomplished by double integrating Eq. (4) over the 
CV and this process has been presented elsewhere (Rabi and de Lemos, 2001; Rabi, 1998). 

The flux blended deferred correction scheme (DCS) was used for nodal interpolation (Khosla 
and Rubin, 1974). In this scheme, interface values are approximated as a linear combination of 
central differencing scheme (CDS) and upwind differencing scheme (UDS) values according to 
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where the starred (*) quantities in the last parenthesis are numerical values from the previous 
iteration. The combination factor  λ  may vary from 0 (pure UDS) to 1 (pure CDS). 

Substitution of all approximate expressions into the general momentum transport equation, Eq. 
(4), gives the following algebraic equation for a given grid node  P 
 



 

 aP φP  =  aE φE  +  aW φW  +  aN φN  +  aS φS  +  bφ (6) 
 

 
 

Figure 1. Sketch of a typical control volume (CV) to perform discretization. 
 
For an example, the east interface coefficient  aE  is of the form 
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The operator  max[p,q]  returns the greater of  p  and  q . The remaining coefficients are defined 
similarly and they can be found in (Rabi, 1998). 

The discretized source term  bφ  contains contributions from the pressure gradient and from the 
DCS previous iteration values according to 
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Here   SU δv = −(Pe − Pw)δy   and   SV δv = −(Pn − Ps)δx . The subscript  nb  indicates that the 
summation is over all neighboring CVs to the CV containing point  P . 
 
3.2. Pressure-Velocity Coupling and Under-relaxation 
 

Pressure-velocity coupling follows the SIMPLE – Semi-Implicit Method for Pressure-Linked 
Equations algorithm (Patankar and Spalding, 1972). The basic idea is to solve a pressure correction  
P′  equation derived from the momentum and continuity equations, which is also of the form 
 
 mPNPSPEPWPP SPaPaPaPaPa −′+′+′+′=′  (9) 
 
Definitions for all coefficients  ai  and for the mass imbalance source term  Sm  are found in 
(Patankar and Spalding, 1972). 

The resulting set of equations is non-linear and coupled. Moreover, some terms are neglected 
when the pressure correction equation, Eq. (9), is obtained. Accordingly, the SIMPLE algorithm 
tends to diverge if no under-relaxation is employed. Therefore, the pressure correction is given by 
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while the velocity components are under-relaxed according to 
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The relaxation factors  ξP’ ,  ξU  and  ξV  need not be the same. 
 
3.4. Multigrid Correction Storage Method 
 

Convergence of the numerical solution is fast in the beginning of calculations, slowing down 
sensibly as the iterative process goes on. This is because the smoothing algorithm can efficiently 
reduce only those Fourier error components whose wavelengths are smaller than or comparable to 
the grid spacing (Hackbusch, 1985; Stüben and Trottenberg, 1982; Brandt, 1977). In other words, a 
given error wavelength can be properly smoothed only at a grid having an adequate mesh spacing. 

The rationale of multigrid methods is to accelerate convergence by covering a broader error 
wavelength spectrum by iterating at a sequence of gradually less refined grids instead of iterating at 
a single grid. Long error wavelengths in a fine mesh become smaller in a coarse one, where they 
can be appropriately smoothed out. Hence, in each grid level visited by the solution process, the 
corresponding error components are efficiently reduced, which speeds up convergence. 

Writing Eq. (6) for each CV in the solution domain results in an equation system of the form 
 
 Ak ΦΦΦΦk  =  bk (12) 
 
where  Ak  is the matrix of coefficients,  ΦΦΦΦk  is the matrix of unknowns and  bk  contains the source 
terms. Index  k  refers to a given grid level, being  k = 1  for the coarsest and  k = M  for the finest. 

Motivated by Jiang et al. (1991), this work implements a multigrid CS method, although this 
formulation is not recommended to solve non-linear problems. On the other hand, restriction 
operations in the CS formulation are relatively simpler to implement than theirs FAS formulation 
counterparts. Coarse grid approximations are obtained for the correction of the flow unknown being 
numerically solved, i.e.,  ΦΦΦΦk  stores the flow unknown itself only when  k = M , whereas  ΦΦΦΦk  stores 
corrections for this unknown for all  k < M . 

Relaxing the equation system, Eq. (12), by a number of smoothing iterations, an intermediate 
value  kΦΦΦΦ   is available along with its correction  φφφφk = ΦΦΦΦk − kΦΦΦΦ  . Defining the residue as 
 
 rk = bk − Ak kΦΦΦΦ  (13) 
 
it is shown (Hackbusch, 1985; Stüben and Trottenberg, 1982; Brandt, 1977) that the correction  φφφφk  
itself is the solution of another linear system 
 
 Ak φφφφk  =  rk (14) 
 
which is of the same form of Eq. (12). In an adjacent coarser grid, Eq. (14) is approximated by 
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After being relaxed, the coarse grid approximation  1k−φφφφ   for the correction is taken back to the 
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in order to refine the intermediate value  kΦΦΦΦ   according to 
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All these numerical operations, Eqs. (12)−(17), are concatenated through all available  k  values 

(i.e. grid levels). The sequence as how the iteration process migrates from one grid level to another 
is what distinguishes the so-called V-cycle from the W-cycle (Hackbusch, 1985). In the present 
paper, only V-cycling strategies are considered. 

The residue restriction in Eq. (15) is accomplished by summing up the residues corresponding to 
the equations of the four fine grid CVs that compose the coarse grid one, as sketched in Fig. (2). 
Indexes  ij  and  IJ  locate the CV in the fine grid and in the coarse grid respectively. 
 

 
 

Figure 2. Restriction procedures: mass flux and residue summation. 
 
Convective and diffusive terms of matrix  Ak , Eq. (7), also undergo restriction. Diffusive terms 

are recalculated after each grid level change since they depend on the grid geometry. Fine grid 
convective fluxes are summed up at control volume faces in order to compose the corresponding 
coarse grid flux, as shown in Fig. (2) (west and south face fluxes are not pictured for clarity). Such 
restriction procedures are commonly used in the literature (Bai et al., 1994; Sathyamurthy and 
Patankar, 1994; Jiang et al., 1991; Joshi and Vanka, 1991; Hortmann et al., 1990; Peric et al., 1989; 
Hutchinson at al., 1988; Hutchinson and Raithby, 1986). 

The prolongation operator  k
1k−I   is numerically accomplished via bilinear interpolation (Bai et 

al., 1994; Jiang et al., 1991; Joshi and Vanka, 1991; Hortmann et al., 1990; Peric et al., 1989; 
Thompson and Ferziger, 1989; Vanka, 1986). In this work, such operator is implemented over a 
non-uniform grid. The idea is to use an intermediate mesh between adjacent fine and coarse grids to 
store values  j I

auxφ   resulting from the application of the operator along one coordinate (say  y) in the 
coarse grid. Then, the operator is again applied along the remaining coordinate (x) in order to obtain 
the fine grid values, as sketched in Fig. (3). Linear interpolation is evoked in both directions. 
 

 
 

Figure 3. Prolongation: recovering the fine grid from the auxiliary grid. 
 



  

4. RESULTS 
 

Flow geometries and boundary conditions studied in this work are sketched in Figs. (4a–d). 
Although there is no recirculation in the flow corresponding to Fig. (4a), its developed velocity 
profile can be analytically described and hence it is useful to validate the numerical method. 
 

(a) 
 

(b) 

(c) 
 

(d) 
 

Figure 4. Laminar flow geometries and boundary conditions considered in this paper: 
(a) parallel plates; (b) backward facing step; (c) confined jet; (d) rectangular tank. 

 
Accordingly, the solution method was initially tested against the laminar flow between parallel 

plates, Fig. (4a). In the outlet region where the flow is fully developed, the U-velocity component 
profile is analytically expressed by (Shah and London, 1978) 
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Adopted values were  Ly = 0.05 m ,  Lx = 1.0 m ,  U0 = 0.1 m/s ,  ρ = 1.0 kg/m3 ,  µ = 10−4 kg/m.s ,  
ξU = 0.8 ,  ξV = 0.6  and  ξP’ = 0.05 . The V-cycling strategy was fixed at 1 pre-smoothing and 1 
post-smoothing iteration (νpre = νpost = 1) and 5 coarsest grid iterations (νcg = 5). Pure UDS (λ = 0) 
was employed as interpolation scheme and there were 160 CVs along the  x  direction (NI) and 32 
CVs along the  y  direction (NJ). A good agreement between the 4-grid numerical solution and the 
exact solution, Eq. (18), can be verified, as shown by Fig. (5). 

The normalized residues reduction histories for the velocity components and for the pressure 
correction of the 4-grid (indicated as 4g) and the 1-grid (1g) solution of this laminar flow are 
pictured in Fig. (6). Residues are calculated and normalized in the finest grid level according to 
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In terms of CPU time spent to run the program until convergence, it is observed that the 4-grid 
algorithm has better performance than the 1-grid algorithm. 

The influence of the grid refining (i.e. grid size) on the multigrid algorithm performance, using a 
given number  M  of grid levels, is verified in Tab. (1). The ratio of the 1-grid computing time to the 
M-grid time is presented in the last column. Such time ratio can be thought of as a measure of the 
relative computational effort saving. It is worth noting that savings increase as grids become finer 
and such feature is what makes multigrid methods interesting. 
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Figure 5. Laminar flow between parallel plates: numerical validation of 4-grid solution. 
 

0 1000 2000 3000 4000 5000
CPU time (s)

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

re
si

du
es

R(U)_4g

R(V)_4g

R(P')_4g

R(U)_1g

R(V)_1g

R(P')_1g

 
 

Figure 6. Flow between parallel plates:  U ,  V  and  P’ residue reduction histories. 



  

Table 1. Flow between parallel plates: grid-refining influence on the computational effort. 
 

NI x NJ M RU (x 10−18) RV (x 10−20) RP’ (x 10−16) tM (s) t1 / tM 
 4 2.76 9.22 9.95 1688.4 2.768 

160 x 32 3 2.01 6.59 10.0 1874.3 2.493 
 2 1.29 4.74 9.99 1912.1 2.444 
 1 1.70 3.56 9.87 4672.8 1 
 4 3.53 21.0 9.99 2615.4 4.066 

240 x 32 3 2.71 11.6 9.93 3218.2 3.304 
 2 1.67 8.11 10.0 3457.1 3.076 
 1 2.34 5.85 10.0 10634.5 1 
 4 6.56 53.0 9.98 2919.0 4.474 

320 x 32 3 3.07 17.5 9.95 3251.6 4.017 
 2 3.44 13.0 9.93 3626.1 3.602 
 1 3.85 12.7 9.95 13060.8 1 

 
Recirculating flows, Figs. (4b−d), are considered next. Table (2) summarizes all geometric and 

physical values concerning the cases studied. Pure UDS (λ = 0) was again employed. Figures 
(7a−c) help to qualitatively visualize the flow field patterns obtained from multigrid numerical 
solutions. The recirculating regions can be clearly seen. 
 

Table 2. Summary of values adopted for the recirculating flows. 
 

Flow type Backward facing step Confined jet Rectangular tank 
Lx (m) 0.5 2.0 0.8 
Ly (m) 0.05 0.5 0.6 

U0 (m/s) 0.2 0.01 0.01 
ρ (kg/m3) 1.0 1.0 1.0 
µ (kg/m.s) 10−4 10−4 10−4 

NI x NJ 144 x 48 160 x 64 128 x 96 
ξU ,  ξV ,  ξP’ 0.8 , 0.6 , 0.03 0.8 , 0.6 , 0.01 0.8 , 0.6 , 0.01 
νpre, νpost, νcg 1 , 1 , 5 1 , 1 , 1 1 , 1 , 1 

 
 

(a) 

 
(b) 

(c) 

 
Figure 7. Flow field visualization (obtained from multigrid solutions):  

(a) backward facing step; (b) confined jet; (c) rectangular tank. 



 

Residue levels and computational efforts (in terms of CPU time spent) from solutions using 
different numbers  M  of grid levels are displayed and compared in Tab. (3). The last column shows 
the ratio of the single-grid solution time (t1) to the multigrid one (tM). Again, this ratio can be seen 
as a measure of the relative computational effort economy. It is seen that in general this economy 
increases as the number of grids used enlarges. 
 

Table 3. Recirculating flows: computational effort results. 
 

Flow type M RU (x 10−18) RV (x 10−19) RP’ (x 10−16) tM (s) t1 / tM 
 4 2.99 3.96 9.92 1608.3 2.962 

Backward 3 2.54 3.62 9.91 1797.0 2.562 
facing step 2 2.52 4.78 9.95 1765.0 2.608 

 1 1.43 1.71 9.96 4603.0 1 
 3 0.194 0.389 9.13 1558.6 4.833 

Confined jet 2 0.997 1.37 9.60 3756.6 2.005 
 1 1.85 2.20 9.05 7533.1 1 

 3 3.27 2.12 9.96 3887.8 2.098 
Rectangular 2 2.55 2.07 9.96 4703.8 1.733 

tank 1 2.60 1.62 9.92 8158.0 1 
 

However, there may be a limiting number of grid levels to be employed. For instance, the 
confined jet multigrid solution employs 3 grid levels at most because only 4 finest grid CVs are 
used to perform the inlet region and using a fourth grid level would make the left upper corner CV 
to be requested by 2 distinct boundary conditions (namely, inlet flow and wall). Divergence was 
observed when a fourth grid level was used to solve the flow through rectangular tank problem. 
This may suggest that the corresponding coarsest grid (16 x 12) was not fine enough to handle 
properly the recirculating regions. 

Results show that the application of the multigrid technique can speed up the iterative algorithm 
by values varying from 1.7 up to 4.8 times (in terms of CPU time), depending on the flow geometry 
and the number of grids employed. Considering multigrid standards, these poor results suggest that 
a multigrid FAS formulation may be more adequate for circulating flow problems. As far as flow 
pattern is concerned, the convergence rate acceleration did not jeopardize qualitatively the expected 
results as pictured in Fig. (7). 
 
3. CONCLUSIONS 
 

A multigrid technique was applied to solve 2-dimension laminar recirculating flow problems. 
The numerical method included finite volume discretization and SIMPLE pressure-velocity 
coupling. Structured, orthogonal and non-uniform meshes were used and the algebraic equation 
system was relaxed by the TDMA algorithm. Multigrid was implemented following a correction 
storage formulation and only V-cycle strategy was considered. Solution method was numerically 
validated by an existing analytical profile. All results showed slightly better performance of 
multigrid solutions when compared to their 1-grid counterpart, without jeopardizing qualitatively 
the flow field pattern. Convergence accelerations up to 4.8 times were observed, which suggest that 
a full approximation storage formulation may actually be more adequate. 
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