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Abstract. This work deals with free convection heat transfer inside horizontal annular concentric 
channels using the Generalized Integral Transform Technique – GITT, a hybrid numerical- 
analytical method that has been successfully applied to different classes of convection-diffusion 
problems. This method allows for error controlled solutions without requirements on grid 
generation strategies. The two-dimensional energy and Navier-Stokes equations in cylindrical 
coordinates are solved making use of the streamfunction-only formulation. Several sets of results 
for different values of aspect ratio and Rayleigh number are calculated and then critically 
compared with previously reported experimental data. 
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1. INTRODUCTION 
 

Free convection inside cavities has received an increasing attention of the thermal science 
researchers because of its wide applicability in industrial processes. The precise knowledge of the 
heat transfer between the cavity walls and the fluid is extremely important in the choice of adequate 
materials and in the optimum design of thermal equipment. In particular, the flow in the annular 
region comprehended by circular concentric ducts is of special interest in thermal engineering 
applications. This flow model occurs, for instance, in double pipe heat exchangers, in nuclear 
reactors cooling, thermal storage tanks, cylindrical thermal insulation, and various other 
applications.  

The present research intends to add some reference information to the literature by providing 
results for steady laminar buoyancy induced flow within horizontal annular concentric cavities, 
making use of the Generalized Integral Transform Technique (GITT) (Cotta, 1993; Cotta and 
Mikhailov, 1997 and Cotta, 1998). The aim of this paper is to demonstrate the suitability of this 
technique as a tool in obtaining engineering or benchmark results in problems of natural convection 
inside annular concentric horizontal ducts and cavities.  
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The problem of natural convection in horizontal concentric annular channels was studied by 
Kuehn and Goldstein (1976), who performed an experimental and theoretical study of the same 
problem here proposed for analysis. They presented results for the temperature distribution and for 
the local heat transfer coefficients. Tsui and Trambley (1984) considered both steady and transient 
regimen using the ADI scheme. Rao et al. (1985) investigated transient two-dimensional and steady 
three-dimensional situations. Mahony et al. (1986), using finite differences, solved a variable 
properties model. 

The present contribution, through integral transformation and its inherent automatic error 
control capability, provides sets of reference results for validation purposes, here employed in 
critical comparisons against some of the above cited previous works. The present analysis is a 
natural extension in the development of this hybrid numerical-analytical approach for heat and fluid 
flow problems, and some of the most representative previous contributions, related to the present 
work, may now be cited: Pérez Guerrero and Cotta (1992, 1996), Pereira et al. (1998, 1999), Leal et 
al. (1999), Pérez Guerrero et al. (2000) and Pereira (2000). 

 
2. ANALYSIS  
 
2.1 Problem Formulation 
 

The physical problem under consideration is related to an annular horizontal channel fulfilled 
with a Newtonian fluid, according to Fig. (1). The annular space is formed by two infinitely long 
concentric cylinders with radii R1 and R2, for the internal and external cylinders, respectively. The 
cylinders walls are maintained at constant and uniform temperatures, with T1 > T2. The fluid flow is 
assumed laminar and occurs only by density differences (buoyancy effects) caused by the different 
sidewalls temperatures. Fluid flow variations along the axial direction are neglected allowing for the 
assumption of a two-dimensional flow situation. The symmetry in the flow related to the vertical 
plane is taken into consideration; besides, the Boussinesq hypothesis is adopted. The mathematical 
representation for this problem is given by the conservation of mass, momentum and energy, which 
in steady state and dimensionless form, are written as: 

 

 
 Figure 1. Geometry and coordinate system. 
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and the following dimensionless boundary conditions: 
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The dimensionless groups used to write Eqs. (1-4) and the boundary conditions (Eqs. 5) are 

defined as: 
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where VR and Vθ are the dimensional radial and angular velocity components, respectively; R and θ 
are the dimensional radial and angular coordinates, P is the dimensional absolute pressure; T is the 
dimensional temperature; T1 and T2 are the dimensional temperatures of the internal and external 
cylinders walls; g is the gravity acceleration; α is the thermal diffusivity; ρ is the fluid specific 
mass; β is the thermal expansion coefficient; µ is the absolute viscosity; cp is the specific heat at 
constant pressure; k is the fluid thermal conductivity; RaL is the Rayleigh number, based on the 
cavity width; and Pr is the Prandtl number. The following additional dimensionless parameters are 
then defined: 
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with r1 and r2 being the dimensionless positions of the internal and external cylindrical walls, 
respectively; ϖ  is the radii ratio; L is the cavity width (distance between the internal and external 
cylinders walls). 

The momentum equations can be represented in the streamfunction-only formulation to 
eliminate the pressure terms and automatically satisfy the continuity equation. Therefore, using the 
same procedure adopted by Pereira et al. (1998), i.e., making use of the definition of the velocity 
components in terms of the streamfunction, given by: 

 

 
θ
ψ

∂
∂=

r
vr

1
; 

r
v

∂
∂−= ψ

θ  (7.a,b) 

 
the following dimensionless coupled partial differential equations are generated: 
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with the following boundary conditions: 
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The fact that no flow occurs across the channel boundaries makes it possible to take 

04321 ==== KKKK  without loss of generality.  
 
2.2 Solution M ethodology 
 

According to the integral transformation approach, the first step is to choose auxiliary 
eigenvalue problems for the momentum and energy equations.  Similarly to the forced convection 
situation (Pereira et al., 1999), we have here used the same forth order eigenvalue problem 
introduced by Chandrasekhar and Reid (1957) as the auxiliary problem to solve the streamfunction 
equation, which is written as: 
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where )(riΧ  and iα  are the eigenfunctions and eigenvalues, respectively. 

The solution is shown in detail in Pereira (2000) and its general form is given by:  
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 It can also be noticed that one of the boundary conditions for the temperature in the ‘r’  direction 
(Eq. 10.c), is non-homogeneous, and generates an additional term in the final system. Therefore, it 
is convenient to make use of a filtering strategy with the goal of homogenizing the boundary 
conditions.  Thus, the problem of heat conduction in a hollow cylinder was utilized to achieve this 
purpose. In this sense, the filtering function problem statement is: 
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The original temperature field is then filtered through the following solution: 
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Making use of this result in Eqs. (8-10), the new set of equations to be solved is obtained as: 
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with the new filtered thermal boundary conditions: 
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 Thus, the energy equation is rewritten in terms of a new potential Φ(r,θ) representing the filtered 
potential for the convection problem temperature profile, after extracting a heat conduction-type 
analytical solution as explicit filter (Pereira, 2000). 

In the case of the energy equation, the auxiliary problem for the resulting filtered energy 
equation is of the Sturm-Liouville type, written as: 
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where Γm(r) and ξm are the eigenfunctions and the eigenvalues, respectively.  

The solution of this auxiliary problem and the orthogonality property are readily available in 
Ozisik (1993) and given by 
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The next step in the solution procedure is to determine the integral transform pairs.  Making use 
of the orthogonality property of the eigenfunctions, the following integral transform pairs for the 
streamfunction and temperature equations are obtained, respectively: 
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Using the transformation rules, given by Eqs. (21.a and 22.a), the coupled partial differential 

equations with their respective boundary conditions are transformed resulting in the following 
coupled ordinary differential system: 
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with the transformed boundary conditions in the angular direction: 
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The integral coefficients appearing in Eqs.(23.a,b), which result from the integral transformation 
procedure, after applying the inversion operators (Eqs. 21.b and 22.b) in the non-transformable 
terms, are defined as (Pereira, 2000): 
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3. RESULTS AND DISCUSSION 
 

The truncated form of the above ordinary differential system, for the transformed potentials, is 
solved by using readily available subroutines with automatic error control, such as the subroutine 
BVPFD of the IMSL Library (1989), which is appropriate to solve stiff boundary value problems. 
The integral ODE system coefficients, which appear after the integral transformation procedure, are 
numerically evaluated, since the internal products that form the integrands involve Bessel functions, 
and most of them do not allow for analytical integration. Details of the solution and computational 
algorithms are found in Pereira (2000). 

All the results were here obtained within a precision of 10-4 for the transformed streamfunction 
and temperature potentials. The aspect ratio ϖ=2.6 was considered a representative value for 
reporting numerical results since it is the most utilized in the literature. Table 1 illustrates the 
convergence behavior of the streamfunction and temperature profiles for three radial positions 
within the annular space and θ=90o, for Rayleigh number, (RaL), equal to 5x104 and Prandtl number 
(Pr) of 0.7.  It can be noticed that a reasonable convergence was already attained with fairly small 
truncation orders (NF=NT=16) in the expansions. For all considered positions, a maximum number 
of terms (NF=NT=30) in the streamfunction and temperature inversion formulae were required to 
fully warrant convergence to all four significant digits. For smaller values of Rayleigh number, the 
convergence rates of the eigenfunction expansions, for both the streamfunction and the temperature 
fields, are somehow improved, due to the increased importance of diffusive effects that are well 
represented within the adopted eigenvalue problems, the basis for the proposed expansions.  

The local Nusselt numbers, at both internal and external channel walls, were evaluated using the 
following definitions: 
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The results for the local Nusselt numbers at the internal and external cylinder walls are 

presented in Fig. (2) and a comparison with experimental results obtained by Kuehn and Goldstein 
(1976) is performed. It can be noticed that a very good agreement between the present hybrid 
solution and the experimental data was achieved, for all positions along the channel walls.  

 



Table 1. Convergence of streamfunction and temperature fields (ϖ=2.6, RaL=5x104, Pr=0.7) 
 

Ψ(r, θ) θ = 90o 

NF=NT r =0.725 1.125 1.525 

8 6.784E+00 2.157E+01 4.674E+00 

16 7.233E-01 4.678E-01 3.339E-01 

24 7.233E-01 4.677E-01 3.340E-01 

28 7.233E-01 4.677E-01 3.340E-01 

30 7.233E-01 4.677E-01 3.340E-01 

Θ(r,z) θ = 90o 

NF=NT r =0.725 1.125 1.525 

8 5.284E-01 3.158E-01 1.527E-01 

16 5.287E-01 3.160E-01 1.528E-01 

24 5.287E-01 3.161E-01 1.528E-01 

28 5.287E-01 3.161E-01 1.528E-01 

30 5.287E-01 3.161E-01 1.528E-01 
 

To illustrate the flow patterns in the annular space of the channel, Figs. (3a-c) show the isolines 
for streamfunction (at the left hand side half-plane) and temperature (at the right hand side half-
plane), considering a variation of the Rayleigh number between 103 and 5x104. As expected, almost 
purely diffusive effects are observed for the lower Rayleigh number (RaL=103), as pointed out by 
Fig. (3a). In this case, the isolines are essentially parallel in both streamfunction and temperature 
contours. 
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Figure 2. Comparison of the local Nusselt numbers from GITT against experimental results.  
 



 

When Rayleigh number increases, the convective effects are more pronounced as becomes 
evident in Figs. (3b and 3c). It is then clearly noticed the increasing presence of the thermal 
boundary layer at both the lower region of the inner wall and at the upper region of the outer 
channel wall. In any such situations, convergence was inspected for and achieved to within the 
requested precision target. 
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Figure 3. Streamfunction and temperature isolines for: (a) (ϖ=2.6, RaL=103, Pr=0.7);  
(b) (ϖ=2.6, RaL=104, Pr=0.7); (c) (ϖ=2.6, RaL=5x104, Pr=0.7) 

 
4. CONCLUSIONS 

 
 The Generalized Integral Transform Technique is successfully implemented for the hybrid 
solution of natural convection within horizontal concentric annular channels, under laminar and 
steady flow conditions. A set of reference results with global error control is provided, in both 
tabular and graphical forms, and previously reported experimental results are employed for 
validation purposes. These encouraging results allow now for the extension of the present analysis 
towards more involved situations, including non-concentric channels, rotating heat pipes flow 
analysis and variable thermophysical fluid properties. 
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